Credibility Evaluation and Results with Leader-Weight in Opinion Mining

K. Cho, Joonsuk Ryu, Jaeho Jeong, Younghee Kim, U. Kim
{"title":"Credibility Evaluation and Results with Leader-Weight in Opinion Mining","authors":"K. Cho, Joonsuk Ryu, Jaeho Jeong, Younghee Kim, U. Kim","doi":"10.1109/CYBERC.2010.12","DOIUrl":null,"url":null,"abstract":"A plethora of information is recently flooding the Internet with a rapid surge in Internet usage. Information easily available on the Internet help researchers understand people they study. The existing techniques of the opinion mining usually consist of sentiment classification, feature-based opinion mining, summarization, comparative sentence and relation mining, opinion search, opinion spam, and the linguistic dictionary construction such as the WordNet. This paper, however, proposes differing methods of opinion mining from existing ones. The methods we present here enable credibility evaluation and result conversion using influence of each opinion holder on the Internet and their personal information, which are an analysis-result of LIWC, including their background information and tendency.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A plethora of information is recently flooding the Internet with a rapid surge in Internet usage. Information easily available on the Internet help researchers understand people they study. The existing techniques of the opinion mining usually consist of sentiment classification, feature-based opinion mining, summarization, comparative sentence and relation mining, opinion search, opinion spam, and the linguistic dictionary construction such as the WordNet. This paper, however, proposes differing methods of opinion mining from existing ones. The methods we present here enable credibility evaluation and result conversion using influence of each opinion holder on the Internet and their personal information, which are an analysis-result of LIWC, including their background information and tendency.
基于领袖权重的意见挖掘可信度评价及结果
最近,随着互联网使用的迅速激增,大量的信息涌入互联网。互联网上容易获得的信息有助于研究人员了解他们研究的对象。现有的意见挖掘技术通常包括情感分类、基于特征的意见挖掘、摘要、比较句和关系挖掘、意见搜索、意见垃圾和语言词典构建(如WordNet)。然而,本文提出了与现有意见挖掘方法不同的意见挖掘方法。我们在这里提出的方法是利用每个意见持有人在互联网上的影响力和他们的个人信息来进行可信度评估和结果转换,这些信息是LIWC的分析结果,包括他们的背景信息和倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信