Leto L. Riebel, Z. Wang, H. Martinez-Navarro, C. Trovato, J. Biasetti, R. S. Oliveira, R. D. Santos, Blanca A Rodríguez
{"title":"Modelling and Simulation Reveals Density-Dependent Re-Entry Risk in The Infarcted Ventricles After Stem Cell-Derived Cardiomyocyte Delivery","authors":"Leto L. Riebel, Z. Wang, H. Martinez-Navarro, C. Trovato, J. Biasetti, R. S. Oliveira, R. D. Santos, Blanca A Rodríguez","doi":"10.22489/CinC.2022.392","DOIUrl":null,"url":null,"abstract":"Delivery of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a potential therapy to improve cardiac function after injury. However, hPSCCMs express immature electrophysiological and structural properties and may be pro-arrhythmic. Our goal is to identify key factors determining arrhythmic risk of hPSC-CM therapy in the infarcted human ventricles through modelling and simulation. We model three densities of hPSC-CMs covering 4%, 22%, and 39% of the infarct and border zone and induce re-entry through ectopic stimulation. We furthermore simulate the effect of different therapeutic agents on re-entry susceptibility. Due to the increased refractory period of the hPSC-CMs, the vulnerable window increases from 20ms in control, to 60ms in the low- and 80ms in the medium- and high-density scenarios. Our results highlight the density-dependent effect of hPSC-CM delivery on arrhythmic risk after myocardial infarction and show the effect of therapeutic strategies on this increased re-entry susceptibility.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Delivery of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a potential therapy to improve cardiac function after injury. However, hPSCCMs express immature electrophysiological and structural properties and may be pro-arrhythmic. Our goal is to identify key factors determining arrhythmic risk of hPSC-CM therapy in the infarcted human ventricles through modelling and simulation. We model three densities of hPSC-CMs covering 4%, 22%, and 39% of the infarct and border zone and induce re-entry through ectopic stimulation. We furthermore simulate the effect of different therapeutic agents on re-entry susceptibility. Due to the increased refractory period of the hPSC-CMs, the vulnerable window increases from 20ms in control, to 60ms in the low- and 80ms in the medium- and high-density scenarios. Our results highlight the density-dependent effect of hPSC-CM delivery on arrhythmic risk after myocardial infarction and show the effect of therapeutic strategies on this increased re-entry susceptibility.