Mitigating Customers’ Downsell Risk for Single-Leg Revenue Management with Demand Dependencies

Lin Li, Yuan Zhou
{"title":"Mitigating Customers’ Downsell Risk for Single-Leg Revenue Management with Demand Dependencies","authors":"Lin Li, Yuan Zhou","doi":"10.1109/WSC40007.2019.9004885","DOIUrl":null,"url":null,"abstract":"With increased complexity of customers choice behaviors, practical optimization approaches often involve decomposing a network revenue management problem into multiple single-leg problems. While dynamic programming approaches can be used to solve single-leg problems exactly, they are not scalable and require precise information about the customers’ arrival rates. On the other hand, the traditional heuristics are often static which do not explicitly consider the remaining time horizon in the optimization. This motivates us to find scalable and efficient dynamic heuristics that work well with the complex customers choice models. We develop two expected marginal seat revenue type heuristics for the single-leg dynamic revenue management problems in airline industry and evaluate its performances using Monte Carlo simulation. The initial simulation results indicate that our proposed heuristics are computationally efficient and fairly robust. This study provides a foundation for potential future extensions to solve larger network problems.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With increased complexity of customers choice behaviors, practical optimization approaches often involve decomposing a network revenue management problem into multiple single-leg problems. While dynamic programming approaches can be used to solve single-leg problems exactly, they are not scalable and require precise information about the customers’ arrival rates. On the other hand, the traditional heuristics are often static which do not explicitly consider the remaining time horizon in the optimization. This motivates us to find scalable and efficient dynamic heuristics that work well with the complex customers choice models. We develop two expected marginal seat revenue type heuristics for the single-leg dynamic revenue management problems in airline industry and evaluate its performances using Monte Carlo simulation. The initial simulation results indicate that our proposed heuristics are computationally efficient and fairly robust. This study provides a foundation for potential future extensions to solve larger network problems.
基于需求依赖的单腿收益管理降低客户降价风险
随着客户选择行为复杂性的增加,实际的优化方法通常涉及将网络收益管理问题分解为多个单腿问题。虽然动态规划方法可以用来精确地解决单腿问题,但它们是不可扩展的,并且需要关于客户到达率的精确信息。另一方面,传统的启发式通常是静态的,没有明确地考虑优化中的剩余时间范围。这促使我们寻找可扩展的、高效的动态启发式方法,这些方法可以很好地处理复杂的客户选择模型。针对航空业的单航线动态收益管理问题,提出了两种期望边际座位收益类型的启发式方法,并利用蒙特卡罗仿真对其性能进行了评价。初步的仿真结果表明,我们提出的启发式算法计算效率高,鲁棒性好。本研究为未来解决更大的网络问题奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信