A modified ant colony based approach to digital image edge detection

Aydin Ayanzadeh, Hossein Pourghaemi, Yousef Seyfari
{"title":"A modified ant colony based approach to digital image edge detection","authors":"Aydin Ayanzadeh, Hossein Pourghaemi, Yousef Seyfari","doi":"10.1109/KBEI.2015.7436096","DOIUrl":null,"url":null,"abstract":"Ant Colony Optimization (ACO) is a nature inspired meta-heuristic algorithms, which can be applied to a wide range of optimization problems. In this paper we present a modified method for edge detection based on the Ant Colony Optimization. Because of disadvantages of traditional edge detection methods, ACO as a relatively new meta-heuristic approach has been used to solve the edge detection problem. The performance of proposed method is compared with traditional ant colony methods, also we have large number of experiments to find out the suitable threshold for proposed method. The experimental results clearly indicate how the ACO can extracts edges in efficient way, also we speed up the proposed method by modifying the effective parameters in speed of the problem and replacing them by optimized values. The results show that this method is faster and more efficient than other former Ant Colony-based edge detection methods.","PeriodicalId":168295,"journal":{"name":"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2015.7436096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ant Colony Optimization (ACO) is a nature inspired meta-heuristic algorithms, which can be applied to a wide range of optimization problems. In this paper we present a modified method for edge detection based on the Ant Colony Optimization. Because of disadvantages of traditional edge detection methods, ACO as a relatively new meta-heuristic approach has been used to solve the edge detection problem. The performance of proposed method is compared with traditional ant colony methods, also we have large number of experiments to find out the suitable threshold for proposed method. The experimental results clearly indicate how the ACO can extracts edges in efficient way, also we speed up the proposed method by modifying the effective parameters in speed of the problem and replacing them by optimized values. The results show that this method is faster and more efficient than other former Ant Colony-based edge detection methods.
基于改进蚁群的数字图像边缘检测方法
蚁群算法(Ant Colony Optimization, ACO)是一种自然启发的元启发式算法,可以应用于广泛的优化问题。本文提出了一种改进的基于蚁群算法的边缘检测方法。针对传统边缘检测方法的不足,蚁群算法作为一种较新的元启发式方法被用于解决边缘检测问题。将所提方法的性能与传统蚁群方法进行了比较,并进行了大量的实验来确定所提方法的合适阈值。实验结果清楚地表明了蚁群算法是如何有效地提取边缘的,并通过修改问题处理速度中的有效参数并用优化值替换它们来加快算法的速度。结果表明,该方法比以往基于蚁群的边缘检测方法更快、更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信