Testing a decentralized filter for GPS/INS integration

M. Wei, K. Schwarz
{"title":"Testing a decentralized filter for GPS/INS integration","authors":"M. Wei, K. Schwarz","doi":"10.1109/PLANS.1990.66210","DOIUrl":null,"url":null,"abstract":"A decentralized Kalman filter strategy is presented and applied to GPS/INS (Global Positioning System/inertial navigation system) integration. Two Kalman filters are used. One is a local filter, processing GPS data and providing locally best estimates of position and velocity. The second is an INS filter which uses the results from the GPS filter as updates to the estimates obtained from the inertial data. Because of the high short-term accuracy of the inertial system, the position results from INS can be used for cycle slip detection and correction. The major advantages of this method are the flexible combination of GPS and INS and the simplicity of the implementation. Compared to centralized filtering, the decentralized filter gives globally the same optimal estimation accuracy as the centralized Kalman filter. The accuracy does not deteriorate when a suboptimal cascaded filter is used, which has some advantages in terms of computational efficiency. Extension of this method to more sensors is straightforward. Numerical results are used to illustrate the salient features of the method.<<ETX>>","PeriodicalId":156436,"journal":{"name":"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.1990.66210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

A decentralized Kalman filter strategy is presented and applied to GPS/INS (Global Positioning System/inertial navigation system) integration. Two Kalman filters are used. One is a local filter, processing GPS data and providing locally best estimates of position and velocity. The second is an INS filter which uses the results from the GPS filter as updates to the estimates obtained from the inertial data. Because of the high short-term accuracy of the inertial system, the position results from INS can be used for cycle slip detection and correction. The major advantages of this method are the flexible combination of GPS and INS and the simplicity of the implementation. Compared to centralized filtering, the decentralized filter gives globally the same optimal estimation accuracy as the centralized Kalman filter. The accuracy does not deteriorate when a suboptimal cascaded filter is used, which has some advantages in terms of computational efficiency. Extension of this method to more sensors is straightforward. Numerical results are used to illustrate the salient features of the method.<>
测试GPS/INS集成的分散式滤波器
提出了一种分散卡尔曼滤波策略,并将其应用于GPS/INS(全球定位系统/惯性导航系统)集成中。使用了两个卡尔曼滤波器。一个是局部滤波器,处理GPS数据并提供局部最佳的位置和速度估计。第二种是INS滤波器,它使用GPS滤波器的结果作为从惯性数据中获得的估计的更新。由于惯性系统具有较高的短期精度,惯性惯性系统的定位结果可用于周跳检测和校正。该方法的主要优点是GPS和INS的灵活结合和实现简单。与集中式滤波相比,分散滤波在全局上具有与集中式卡尔曼滤波相同的最优估计精度。当使用次优级联滤波器时,精度不会下降,在计算效率方面具有一定的优势。将这种方法扩展到更多的传感器是很简单的。数值结果说明了该方法的显著特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信