{"title":"High Throughput Algorithm for Leukemia Cell Population Statistics on a Hemocytometer","authors":"B. Prasad, Wael Badawy","doi":"10.1109/BIOCAS.2007.4463329","DOIUrl":null,"url":null,"abstract":"This paper presents a high throughput cell count and cluster classification algorithm to quantify population statistics of leukemia cell lines on a conventional hemocytometer. The algorithm has been designed, implemented and tested on test images that vary in image quality. The proposed algorithm uses a recursively segmented, median filtered and a boosted Prewitt gradient mask to generate a boundary box that encloses all the identified cells. Intensity profile plots acting as signature plots further assist in classifying a single isolated cell from a cell cluster. Processed results compared manually by a biological expert resulted in an accuracy of 95 % for even low quality images with a computational time ranging between 8-12sec. Improved performance from the proposed algorithm could be observed when compared with other conventional image analysis tools.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper presents a high throughput cell count and cluster classification algorithm to quantify population statistics of leukemia cell lines on a conventional hemocytometer. The algorithm has been designed, implemented and tested on test images that vary in image quality. The proposed algorithm uses a recursively segmented, median filtered and a boosted Prewitt gradient mask to generate a boundary box that encloses all the identified cells. Intensity profile plots acting as signature plots further assist in classifying a single isolated cell from a cell cluster. Processed results compared manually by a biological expert resulted in an accuracy of 95 % for even low quality images with a computational time ranging between 8-12sec. Improved performance from the proposed algorithm could be observed when compared with other conventional image analysis tools.