Basic Observables for Probabilistic May Testing

Maria Carla Palmeri, R. Nicola, M. Massink
{"title":"Basic Observables for Probabilistic May Testing","authors":"Maria Carla Palmeri, R. Nicola, M. Massink","doi":"10.1109/QEST.2007.19","DOIUrl":null,"url":null,"abstract":"The definition of behavioural preorders over process terms as the maximal (pre-)congruences induced by basic observables has proven to be a useful technique to define various preorders and equivalences in the non-probabilistic setting. In this paper, we consider probabilistic observables to define an observational semantics for a probabilistic process calculus. The resulting pre-congruence is proven to coincide with a probabilistic may preorder, which, in turn, corresponds to a natural probabilistic extension of the may testing preorder of De Nicola and Hennessy.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2007.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The definition of behavioural preorders over process terms as the maximal (pre-)congruences induced by basic observables has proven to be a useful technique to define various preorders and equivalences in the non-probabilistic setting. In this paper, we consider probabilistic observables to define an observational semantics for a probabilistic process calculus. The resulting pre-congruence is proven to coincide with a probabilistic may preorder, which, in turn, corresponds to a natural probabilistic extension of the may testing preorder of De Nicola and Hennessy.
概率检验的基本观测值
将过程项上的行为预定顺序定义为由基本可观测值引起的最大(预)同余,已被证明是在非概率设置中定义各种预定顺序和等价的有用技术。在本文中,我们考虑概率可观测值来定义一个概率过程演算的观测语义。由此产生的预同余被证明与概率的可能预序一致,这反过来又对应于De Nicola和Hennessy的可能测试预序的自然概率扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信