Abnormal work cycle detection based on dissimilarity measurement of trajectories

Xingzhe Xie, Dimitri Van Cauwelaert, Maarten Slembrouck, Karel Bauters, Johannes Cottyn, D. V. Haerenborgh, H. Aghajan, P. Veelaert, W. Philips
{"title":"Abnormal work cycle detection based on dissimilarity measurement of trajectories","authors":"Xingzhe Xie, Dimitri Van Cauwelaert, Maarten Slembrouck, Karel Bauters, Johannes Cottyn, D. V. Haerenborgh, H. Aghajan, P. Veelaert, W. Philips","doi":"10.1145/2789116.2789142","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for detecting the abnormalities of the executed work cycles for the factory workers using their tracks obtained in a multi-camera network. The method allows analyzing both spatial and temporal dissimilarity between the pairwise tracks. The main novelty of the methods is calculating spatial dissimilarity between pair-wise tracks by aligning them using Dynamic Time Warping (DTW) based on coordinate distance, and specially the velocity and dwell time dissimilarity using a different track alignment based on velocity difference. These dissimilarity measurements are used to cluster the executed work cycles and detect abnormalities. The experimental results show that our algorithm outperforms other methods on clustering the tracks because of the use of temporal dissimilarity.","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2789142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method for detecting the abnormalities of the executed work cycles for the factory workers using their tracks obtained in a multi-camera network. The method allows analyzing both spatial and temporal dissimilarity between the pairwise tracks. The main novelty of the methods is calculating spatial dissimilarity between pair-wise tracks by aligning them using Dynamic Time Warping (DTW) based on coordinate distance, and specially the velocity and dwell time dissimilarity using a different track alignment based on velocity difference. These dissimilarity measurements are used to cluster the executed work cycles and detect abnormalities. The experimental results show that our algorithm outperforms other methods on clustering the tracks because of the use of temporal dissimilarity.
基于轨迹不相似度测量的异常工作周期检测
本文提出了一种利用多摄像机网络获取的工人轨迹来检测工厂工人工作周期异常的方法。该方法允许分析成对轨迹之间的空间和时间差异。该方法的主要新颖之处在于利用基于坐标距离的动态时间翘曲(DTW)对成对轨迹进行对齐,从而计算轨迹之间的空间不相似度,特别是利用基于速度差的不同轨迹对齐来计算速度和停留时间的不相似度。这些不相似度测量用于对已执行的工作周期进行聚类并检测异常情况。实验结果表明,由于使用了时间不相似性,我们的算法在轨道聚类方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信