Implicit learning in autoencoder novelty assessment

B.B. Thompson, Robert J. Marks, Jai J Choi, Mohamed A. El-Sharkawi, Ming-Yuh Huang, Carl Bunje
{"title":"Implicit learning in autoencoder novelty assessment","authors":"B.B. Thompson, Robert J. Marks, Jai J Choi, Mohamed A. El-Sharkawi, Ming-Yuh Huang, Carl Bunje","doi":"10.1109/IJCNN.2002.1007605","DOIUrl":null,"url":null,"abstract":"When the situation arises that only \"normal\" behavior is known about a system, it is desirable to develop a system based solely on that behavior which enables the user to determine when that system behavior falls outside of that range of normality. A new method is proposed for detecting such novel behavior through the use of autoassociative neural network encoders, which can be shown to implicitly learn the nature of the underlying \"normal\" system behavior.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

When the situation arises that only "normal" behavior is known about a system, it is desirable to develop a system based solely on that behavior which enables the user to determine when that system behavior falls outside of that range of normality. A new method is proposed for detecting such novel behavior through the use of autoassociative neural network encoders, which can be shown to implicitly learn the nature of the underlying "normal" system behavior.
自编码器新颖性评估中的内隐学习
当一个系统只有“正常”的行为是已知的情况出现时,我们希望开发一个仅基于该行为的系统,使用户能够确定该系统行为何时超出了正常范围。提出了一种通过使用自关联神经网络编码器来检测这种新行为的新方法,该方法可以隐式地学习潜在“正常”系统行为的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信