Deep RMCSA for Resource Allocation in Spectrally-Spatially Flexible Optical Networks

Josh Wong, Natalie Doan, Michal Aibin
{"title":"Deep RMCSA for Resource Allocation in Spectrally-Spatially Flexible Optical Networks","authors":"Josh Wong, Natalie Doan, Michal Aibin","doi":"10.1109/UEMCON53757.2021.9666523","DOIUrl":null,"url":null,"abstract":"A gradual transition from traditional fixed frequency networks towards Spectrally-Spatially Flexible Optical Networks (SS-FONs) will ensure that networks continue to meet increasing Internet bandwidth demands. The DeepRMCSA algorithm, proposed in this paper, uses deep reinforcement learning to determine the optimal policies for solving the Routing, Modulation, Core and Spectrum Assignment problem in SS-FONs. We evaluate the performance of our algorithm by comparing it with other approaches used in the literature.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON53757.2021.9666523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A gradual transition from traditional fixed frequency networks towards Spectrally-Spatially Flexible Optical Networks (SS-FONs) will ensure that networks continue to meet increasing Internet bandwidth demands. The DeepRMCSA algorithm, proposed in this paper, uses deep reinforcement learning to determine the optimal policies for solving the Routing, Modulation, Core and Spectrum Assignment problem in SS-FONs. We evaluate the performance of our algorithm by comparing it with other approaches used in the literature.
基于深度RMCSA的频谱空间柔性光网络资源分配
从传统的固定频率网络向频谱-空间柔性光网络(SS-FONs)的逐步过渡将确保网络继续满足日益增长的互联网带宽需求。本文提出的DeepRMCSA算法使用深度强化学习来确定解决ss - fon中的路由、调制、核心和频谱分配问题的最优策略。我们通过将算法与文献中使用的其他方法进行比较来评估算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信