PatchAugment: Local Neighborhood Augmentation in Point Cloud Classification

Shivanand Venkanna Sheshappanavar, Vinit Veerendraveer, C. Kambhamettu
{"title":"PatchAugment: Local Neighborhood Augmentation in Point Cloud Classification","authors":"Shivanand Venkanna Sheshappanavar, Vinit Veerendraveer, C. Kambhamettu","doi":"10.1109/ICCVW54120.2021.00240","DOIUrl":null,"url":null,"abstract":"Recent deep neural network models trained on smaller and less diverse datasets use data augmentation to alleviate limitations such as overfitting, reduced robustness, and lower generalization. Methods using 3D datasets are among the most common to use data augmentation techniques such as random point drop, scaling, translation, rotations, and jittering. However, these data augmentation techniques are fixed and are often applied to the entire object, ignoring the object’s local geometry. Different local neighborhoods on the object surface hold a different amount of geometric complexity. Applying the same data augmentation techniques at the object level is less effective in augmenting local neighborhoods with complex structures. This paper presents PatchAugment, a data augmentation framework to apply different augmentation techniques to the local neighborhoods. Our experimental studies on PointNet++ and DGCNN models demonstrate the effectiveness of PatchAugment on the task of 3D Point Cloud Classification. We evaluated our technique against these models using four benchmark datasets, ModelNet40 (synthetic), ModelNetlO (synthetic), SHREC’16 (synthetic) and ScanObjectNN (real-world).","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recent deep neural network models trained on smaller and less diverse datasets use data augmentation to alleviate limitations such as overfitting, reduced robustness, and lower generalization. Methods using 3D datasets are among the most common to use data augmentation techniques such as random point drop, scaling, translation, rotations, and jittering. However, these data augmentation techniques are fixed and are often applied to the entire object, ignoring the object’s local geometry. Different local neighborhoods on the object surface hold a different amount of geometric complexity. Applying the same data augmentation techniques at the object level is less effective in augmenting local neighborhoods with complex structures. This paper presents PatchAugment, a data augmentation framework to apply different augmentation techniques to the local neighborhoods. Our experimental studies on PointNet++ and DGCNN models demonstrate the effectiveness of PatchAugment on the task of 3D Point Cloud Classification. We evaluated our technique against these models using four benchmark datasets, ModelNet40 (synthetic), ModelNetlO (synthetic), SHREC’16 (synthetic) and ScanObjectNN (real-world).
PatchAugment:点云分类中的局部邻域增强
最近的深度神经网络模型在更小和更少的数据集上训练,使用数据增强来缓解诸如过拟合、鲁棒性降低和较低泛化等限制。使用3D数据集的方法是最常用的数据增强技术,如随机点下降、缩放、平移、旋转和抖动。然而,这些数据增强技术是固定的,并且通常应用于整个对象,而忽略了对象的局部几何形状。物体表面不同的局部邻域具有不同的几何复杂性。在对象级别应用相同的数据增强技术,在增强具有复杂结构的局部邻域时效果较差。本文提出了一个数据增强框架PatchAugment,将不同的增强技术应用于局部邻域。我们在pointnet++和DGCNN模型上的实验研究证明了PatchAugment在3D点云分类任务上的有效性。我们使用四个基准数据集,ModelNet40(合成)、ModelNetlO(合成)、SHREC ' 16(合成)和ScanObjectNN(真实世界),对这些模型评估了我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信