Digitization of straight line segments closeness and convexity

Maurice Maes
{"title":"Digitization of straight line segments closeness and convexity","authors":"Maurice Maes","doi":"10.1016/0734-189X(90)90060-9","DOIUrl":null,"url":null,"abstract":"<div><p>In her thesis “Digitisation Functions in Computer Graphics” M. van Lierop presents a framework in which one can mathematically describe digitization of straight line segments, and desirable properties of this digitization, such as translation invariance, closeness, minimality, and convexity (convexity is sometimes called “the subset line property”). In the second chapter of her thesis she proves that a line function that has these four properties does not exist, and the remaining question is whether closeness and convexity are mutually exclusive properties (even if one drops minimality or translation invariance). In this paper we will answer this question affirmatively.</p></div>","PeriodicalId":100319,"journal":{"name":"Computer Vision, Graphics, and Image Processing","volume":"52 2","pages":"Pages 297-305"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0734-189X(90)90060-9","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision, Graphics, and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0734189X90900609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In her thesis “Digitisation Functions in Computer Graphics” M. van Lierop presents a framework in which one can mathematically describe digitization of straight line segments, and desirable properties of this digitization, such as translation invariance, closeness, minimality, and convexity (convexity is sometimes called “the subset line property”). In the second chapter of her thesis she proves that a line function that has these four properties does not exist, and the remaining question is whether closeness and convexity are mutually exclusive properties (even if one drops minimality or translation invariance). In this paper we will answer this question affirmatively.

数字化直线线段的贴近性和凸性
在她的论文“计算机图形学中的数字化功能”中,M. van Lierop提出了一个框架,在这个框架中,人们可以用数学方法描述直线段的数字化,以及这种数字化的理想属性,如平移不变性、接近性、极小性和凹凸性(凹凸性有时被称为“子集线属性”)。在她论文的第二章中,她证明了一个具有这四个性质的线函数不存在,剩下的问题是是否接近性和凸性是互斥的性质(即使一个人放弃极小性或平移不变性)。在本文中,我们将肯定地回答这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信