{"title":"Kreon","authors":"Anastasios Papagiannis, Giorgos Saloustros, Giorgos Xanthakis, Giorgos Kalaentzis, Pilar González-Férez, A. Bilas","doi":"10.1145/3418414","DOIUrl":null,"url":null,"abstract":"Persistent key-value stores have emerged as a main component in the data access path of modern data processing systems. However, they exhibit high CPU and I/O overhead. Nowadays, due to power limitations, it is important to reduce CPU overheads for data processing. In this article, we propose Kreon, a key-value store that targets servers with flash-based storage, where CPU overhead and I/O amplification are more significant bottlenecks compared to I/O randomness. We first observe that two significant sources of overhead in key-value stores are: (a) The use of compaction in Log-Structured Merge-Trees (LSM-Tree) that constantly perform merging and sorting of large data segments and (b) the use of an I/O cache to access devices, which incurs overhead even for data that reside in memory. To avoid these, Kreon performs data movement from level to level by using partial reorganization instead of full data reorganization via the use of a full index per-level. Kreon uses memory-mapped I/O via a custom kernel path to avoid a user-space cache. For a large dataset, Kreon reduces CPU cycles/op by up to 5.8×, reduces I/O amplification for inserts by up to 4.61×, and increases insert ops/s by up to 5.3×, compared to RocksDB.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3418414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Persistent key-value stores have emerged as a main component in the data access path of modern data processing systems. However, they exhibit high CPU and I/O overhead. Nowadays, due to power limitations, it is important to reduce CPU overheads for data processing. In this article, we propose Kreon, a key-value store that targets servers with flash-based storage, where CPU overhead and I/O amplification are more significant bottlenecks compared to I/O randomness. We first observe that two significant sources of overhead in key-value stores are: (a) The use of compaction in Log-Structured Merge-Trees (LSM-Tree) that constantly perform merging and sorting of large data segments and (b) the use of an I/O cache to access devices, which incurs overhead even for data that reside in memory. To avoid these, Kreon performs data movement from level to level by using partial reorganization instead of full data reorganization via the use of a full index per-level. Kreon uses memory-mapped I/O via a custom kernel path to avoid a user-space cache. For a large dataset, Kreon reduces CPU cycles/op by up to 5.8×, reduces I/O amplification for inserts by up to 4.61×, and increases insert ops/s by up to 5.3×, compared to RocksDB.