On Star-critical (K1,n, K1,m + e) Ramsey Numbers

C. Jayawardene, J. Senadheera, K. A. S. N. Fernando, W. C. W. Navaratna
{"title":"On Star-critical (K1,n, K1,m + e) Ramsey Numbers","authors":"C. Jayawardene, J. Senadheera, K. A. S. N. Fernando, W. C. W. Navaratna","doi":"10.22457/apam.v22n2a02702","DOIUrl":null,"url":null,"abstract":"We say that Kn → (G,H), if for every red/blue colouring of edges of the complete graph Kn, there exists a red copy of G, or a blue copy of H in the colouring of Kn. The Ramsey number r(G,H) is the smallest positive integer n such that Kn → (G,H). Let r(n,m)=r(Kn, Km). A closely related concept of Ramsey numbers is the Star-critical Ramsey number r*(G, H) defined as the largest value of k such that K r(G,H)-1 ˅ K 1,k → (G,H). Literature on survey papers in this area reveals many unsolved problems related to these numbers. One of these problems is the calculation of Ramsey numbers for certain classes of graphs. The primary objective of this paper is to calculate the Star critical Ramsey numbers for the case of Stars versus K1,m+e. The methodology that we follow in solving this problem is to first find a closed form for the Ramsey number r*(K1,n , K1,m+e) for all n, m ≥ 3. Based on the values of r*(K1,n , K1,m+e) for different n, m we arrive at a general formula for r*(K1,n , K1,m+e). Henceforth, we show that r*(K1,n , K1,m+e) = n+m-1 is defined by a piecewise function related to the three disjoint cases of n, m both even and n ≤ m - 2, n or m is odd and n ≤ m-2 and n > m-2.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v22n2a02702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We say that Kn → (G,H), if for every red/blue colouring of edges of the complete graph Kn, there exists a red copy of G, or a blue copy of H in the colouring of Kn. The Ramsey number r(G,H) is the smallest positive integer n such that Kn → (G,H). Let r(n,m)=r(Kn, Km). A closely related concept of Ramsey numbers is the Star-critical Ramsey number r*(G, H) defined as the largest value of k such that K r(G,H)-1 ˅ K 1,k → (G,H). Literature on survey papers in this area reveals many unsolved problems related to these numbers. One of these problems is the calculation of Ramsey numbers for certain classes of graphs. The primary objective of this paper is to calculate the Star critical Ramsey numbers for the case of Stars versus K1,m+e. The methodology that we follow in solving this problem is to first find a closed form for the Ramsey number r*(K1,n , K1,m+e) for all n, m ≥ 3. Based on the values of r*(K1,n , K1,m+e) for different n, m we arrive at a general formula for r*(K1,n , K1,m+e). Henceforth, we show that r*(K1,n , K1,m+e) = n+m-1 is defined by a piecewise function related to the three disjoint cases of n, m both even and n ≤ m - 2, n or m is odd and n ≤ m-2 and n > m-2.
星临界(K1,n, K1,m + e)拉姆齐数
我们说Kn→(G,H),如果对于完全图Kn的每一个红/蓝着色边,在Kn的着色中存在一个G的红色副本,或一个H的蓝色副本。拉姆齐数r(G,H)是使Kn→(G,H)的最小正整数n。令r(n,m)=r(Kn, Km)与拉姆齐数密切相关的一个概念是关键拉姆齐数r*(G, H),定义为k的最大值,使k r(G,H)-1 k 1,k→(G,H)。这一领域的调查文献揭示了许多与这些数字相关的未解决问题。其中一个问题是计算某类图的拉姆齐数。本文的主要目标是计算Stars与K1,m+e情况下的Star临界拉姆齐数。我们在解决这个问题时遵循的方法是首先找到所有n, m≥3的拉姆齐数r*(K1,n, K1,m+e)的封闭形式。根据不同n, m时r*(K1,n, K1,m+e)的值,我们得到r*(K1,n, K1,m+e)的一般公式。因此,我们证明r*(K1,n, K1,m+e) = n+m-1是由一个分段函数定义的,该函数与n, m为偶数且n≤m-2,n或m为奇数且n≤m-2和n > m-2的三种不相交情况有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信