DIFFERENTIALLY PRIVATE SPARSE INVERSE COVARIANCE ESTIMATION

Di Wang, Mengdi Huai, Jinhui Xu
{"title":"DIFFERENTIALLY PRIVATE SPARSE INVERSE COVARIANCE ESTIMATION","authors":"Di Wang, Mengdi Huai, Jinhui Xu","doi":"10.1109/GlobalSIP.2018.8646444","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first results on the sparse inverse covariance estimation problem under the differential privacy model. We first gave an ε-differentially private algorithm using output perturbation strategy, which is based on the sensitivity of the optimization problem and the Wishart mechanism. To further improve this result, we then introduce a general covariance perturbation method to achieve both ε-differential privacy and (ε, δ)-differential privacy. For ε-differential privacy, we analyze the performance of Laplacian and Wishart mechanisms, and for (ε, δ)-differential privacy, we examine the performance of Gaussian and Wishart mechanisms. Experiments on both synthetic and benchmark datasets confirm our theoretical analysis.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present the first results on the sparse inverse covariance estimation problem under the differential privacy model. We first gave an ε-differentially private algorithm using output perturbation strategy, which is based on the sensitivity of the optimization problem and the Wishart mechanism. To further improve this result, we then introduce a general covariance perturbation method to achieve both ε-differential privacy and (ε, δ)-differential privacy. For ε-differential privacy, we analyze the performance of Laplacian and Wishart mechanisms, and for (ε, δ)-differential privacy, we examine the performance of Gaussian and Wishart mechanisms. Experiments on both synthetic and benchmark datasets confirm our theoretical analysis.
差分私有稀疏逆协方差估计
本文给出了差分隐私模型下稀疏反协方差估计问题的初步结果。首先基于优化问题的敏感性和Wishart机制,提出了一种基于输出摄动策略的ε-差分私有算法。为了进一步改进这一结果,我们引入了一种通用的协方差摄动方法来实现ε-微分隐私和(ε, δ)-微分隐私。对于ε-微分隐私,我们分析了拉普拉斯机制和Wishart机制的性能,对于(ε, δ)-微分隐私,我们研究了高斯机制和Wishart机制的性能。在合成数据集和基准数据集上的实验证实了我们的理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信