Passive Loss Inference in Wireless Sensor Networks Using EM Algorithm

Yu Yang, Zhulin An, Yongjun Xu, Xiaowei Li, Canfeng Chen
{"title":"Passive Loss Inference in Wireless Sensor Networks Using EM Algorithm","authors":"Yu Yang, Zhulin An, Yongjun Xu, Xiaowei Li, Canfeng Chen","doi":"10.4236/wsn.201027063","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Sens. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wsn.201027063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.
基于EM算法的无线传感器网络无源损耗推断
无线传感器网络(WSNs)主要用于数据采集,因此可以通过利用来自各个传感器节点的应用数据是否到达接收器来被动地衡量网络性能。因此,在本文中,我们考虑到无线传感器网络独特的数据聚合通信模式,并将链路损失率推理问题建模为最大似然估计问题。提出了一种基于标准期望最大化(EM)技术的推理算法。该算法不仅适用于周期性数据采集场景,也适用于事件检测场景。最后,通过仿真对算法进行了验证,结果表明该算法具有良好的性能和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信