Car Detection Using Cascade Classifier on Embedded Platform

Muhammad Asyraf Zulkhairi, Y. M. Mustafah, Z. Z. Abidin, H. F. Zaki, H. A. Rahman
{"title":"Car Detection Using Cascade Classifier on Embedded Platform","authors":"Muhammad Asyraf Zulkhairi, Y. M. Mustafah, Z. Z. Abidin, H. F. Zaki, H. A. Rahman","doi":"10.1109/ICOM47790.2019.8952064","DOIUrl":null,"url":null,"abstract":"Advanced Driver-Assistance Systems (ADAS) help reducing traffic accidents caused by distracted driving. One of the features of ADAS is Forward Collision Warning System (FCWS). In FCWS, car detection is a crucial step. This paper explains about car detection system using cascade classifier running on embedded platform. The embedded platform used is NXP SBC-S32V234 evaluation board with 64-bit Quad ARM Cortex-A53. The system algorithm is developed in C++ programming language and used open source computer vision library, OpenCV. For car detection process, object detection by cascade classifier method is used. We trained the cascade detector using positive and negative instances mostly from our self-collected Malaysian road dataset. The tested car detection system gives about 88.3 percent detection accuracy with images of 340 by 135 resolution (after cropped and resized). When running on the embedded platform, it managed to get average 13 frames per second with video file input and average 15 frames per second with camera input.","PeriodicalId":415914,"journal":{"name":"2019 7th International Conference on Mechatronics Engineering (ICOM)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Mechatronics Engineering (ICOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOM47790.2019.8952064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Advanced Driver-Assistance Systems (ADAS) help reducing traffic accidents caused by distracted driving. One of the features of ADAS is Forward Collision Warning System (FCWS). In FCWS, car detection is a crucial step. This paper explains about car detection system using cascade classifier running on embedded platform. The embedded platform used is NXP SBC-S32V234 evaluation board with 64-bit Quad ARM Cortex-A53. The system algorithm is developed in C++ programming language and used open source computer vision library, OpenCV. For car detection process, object detection by cascade classifier method is used. We trained the cascade detector using positive and negative instances mostly from our self-collected Malaysian road dataset. The tested car detection system gives about 88.3 percent detection accuracy with images of 340 by 135 resolution (after cropped and resized). When running on the embedded platform, it managed to get average 13 frames per second with video file input and average 15 frames per second with camera input.
嵌入式平台上基于级联分类器的汽车检测
高级驾驶辅助系统(ADAS)有助于减少因分心驾驶而导致的交通事故。前方碰撞预警系统(FCWS)是ADAS的一大特点。在FCWS中,车辆检测是至关重要的一步。介绍了在嵌入式平台上运行的基于级联分类器的汽车检测系统。采用的嵌入式平台是NXP SBC-S32V234评估板,64位Quad ARM Cortex-A53。系统算法采用c++编程语言开发,采用开源计算机视觉库OpenCV。在汽车检测过程中,采用了级联分类器的目标检测方法。我们使用主要来自我们自己收集的马来西亚道路数据集的正、负实例来训练级联检测器。经过测试的汽车检测系统对分辨率为340 × 135的图像(裁剪和调整大小后)的检测准确率约为88.3%。在嵌入式平台上运行时,视频文件输入平均每秒13帧,摄像头输入平均每秒15帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信