A numerical stable algorithm for constructing constrained Delaunay triangulation and application to multichip module layout

Yizhi Lu, W. Dai
{"title":"A numerical stable algorithm for constructing constrained Delaunay triangulation and application to multichip module layout","authors":"Yizhi Lu, W. Dai","doi":"10.1109/CICCAS.1991.184439","DOIUrl":null,"url":null,"abstract":"Presents some characteristics of constrained Delaunay triangulation and introduces a numerically stable algorithm for incrementally constructing constrained Delaunay triangulation. This algorithm produces constrained Delaunay triangulation at each step. It builds Delaunay triangulation in O(N/sup 2/) time in the worst case. However, its average case performance is O(NlogN). Since the algorithm mainly uses the circle criterion, it arises the precision problem, such as whether a point is inside, outside or exactly on a circle. The authors present a method to conceptually avoid the numerical errors. The experimental results are shown in this paper.<<ETX>>","PeriodicalId":119051,"journal":{"name":"China., 1991 International Conference on Circuits and Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China., 1991 International Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICCAS.1991.184439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Presents some characteristics of constrained Delaunay triangulation and introduces a numerically stable algorithm for incrementally constructing constrained Delaunay triangulation. This algorithm produces constrained Delaunay triangulation at each step. It builds Delaunay triangulation in O(N/sup 2/) time in the worst case. However, its average case performance is O(NlogN). Since the algorithm mainly uses the circle criterion, it arises the precision problem, such as whether a point is inside, outside or exactly on a circle. The authors present a method to conceptually avoid the numerical errors. The experimental results are shown in this paper.<>
构造约束Delaunay三角剖分的数值稳定算法及其在多芯片模块布局中的应用
提出了约束德劳内三角剖分的一些特点,并介绍了一种增量构造约束德劳内三角剖分的数值稳定算法。该算法在每一步产生约束Delaunay三角剖分。在最坏的情况下,它在O(N/sup 2/)时间内构建Delaunay三角剖分。但其平均case性能为0 (NlogN)。由于该算法主要采用圆准则,因此产生了精度问题,如一个点是在圆内、圆外还是恰好在圆上。作者提出了一种从概念上避免数值误差的方法。本文给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信