Dynamic resource allocation in radio-over-fiber enabled dense cellular networks

Bart Post, S. Borst, A. Koonen
{"title":"Dynamic resource allocation in radio-over-fiber enabled dense cellular networks","authors":"Bart Post, S. Borst, A. Koonen","doi":"10.23919/WIOPT.2018.8362822","DOIUrl":null,"url":null,"abstract":"Network densification has emerged as a powerful paradigm to boost spectral efficiency and accommodate the continual rise in demand for wireless capacity. The corresponding reduction in cell sizes also results however in greater spatial and temporal uncertainty and variation in traffic patterns and more extreme and unpredictable interference conditions. These features create unprecedented challenges for efficient allocation of spectral resources compared to conventional cellular networks. As a further challenge, the allocation of spectral resources needs to be jointly optimized with the assignment of wavelengths in the optical backhaul of Radio-over-Fiber (RoF) networks, which are increasingly used in dense deployments and indoor environments. Motivated by these issues, we develop online algorithms for joint radio frequency and optical wavelength assignment in RoF networks. The proposed algorithms rely on load measurements at the various access points, and involve configurable thresholds for triggering (re)assignment of spectral resources. We provide a detailed specification of a system implementation, and conduct extensive simulation experiments to examine the behaviour in various scenarios and assess the impact of key parameters. The results in particular demonstrate that the proposed algorithms are capable of maintaining adequate load levels for spatially heterogeneous and time-varying traffic conditions, while providing favourable throughput performance.","PeriodicalId":231395,"journal":{"name":"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2018.8362822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network densification has emerged as a powerful paradigm to boost spectral efficiency and accommodate the continual rise in demand for wireless capacity. The corresponding reduction in cell sizes also results however in greater spatial and temporal uncertainty and variation in traffic patterns and more extreme and unpredictable interference conditions. These features create unprecedented challenges for efficient allocation of spectral resources compared to conventional cellular networks. As a further challenge, the allocation of spectral resources needs to be jointly optimized with the assignment of wavelengths in the optical backhaul of Radio-over-Fiber (RoF) networks, which are increasingly used in dense deployments and indoor environments. Motivated by these issues, we develop online algorithms for joint radio frequency and optical wavelength assignment in RoF networks. The proposed algorithms rely on load measurements at the various access points, and involve configurable thresholds for triggering (re)assignment of spectral resources. We provide a detailed specification of a system implementation, and conduct extensive simulation experiments to examine the behaviour in various scenarios and assess the impact of key parameters. The results in particular demonstrate that the proposed algorithms are capable of maintaining adequate load levels for spatially heterogeneous and time-varying traffic conditions, while providing favourable throughput performance.
无线光纤密集蜂窝网络中的动态资源分配
网络致密化已成为提高频谱效率和适应无线容量需求持续增长的有力范例。然而,小区尺寸的相应减小也导致了更大的时空不确定性和交通模式的变化,以及更极端和不可预测的干扰条件。与传统蜂窝网络相比,这些特性为频谱资源的有效分配带来了前所未有的挑战。作为进一步的挑战,频谱资源的分配需要与光纤无线电(RoF)网络光回程中的波长分配共同优化,这越来越多地用于密集部署和室内环境。在这些问题的激励下,我们开发了RoF网络中联合射频和光波长分配的在线算法。所提出的算法依赖于各种接入点的负载测量,并涉及触发(重新)分配频谱资源的可配置阈值。我们提供了系统实现的详细规格,并进行了广泛的模拟实验,以检查不同场景下的行为,并评估关键参数的影响。结果特别表明,所提出的算法能够在空间异构和时变交通条件下保持足够的负载水平,同时提供有利的吞吐量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信