Book2Vec: Representing Books in Vector Space Without Using the Contents

Soraya Anvari, Hossein Amirkhani
{"title":"Book2Vec: Representing Books in Vector Space Without Using the Contents","authors":"Soraya Anvari, Hossein Amirkhani","doi":"10.1109/ICCKE.2018.8566329","DOIUrl":null,"url":null,"abstract":"This paper presents book2vec, a neural network based embedding approach for creating book representations. In this work, a well-known method from natural language processing domain, namely word2vec, is applied to a dataset of the books read by different users from the Goodreads website. Unlike previous works, we use non-textual features, considering only the book IDs. We represent the books read by each user as a sentence where the books' IDs are the words in the sentences. The results show that this approach can find meaningful representation of the books.","PeriodicalId":283700,"journal":{"name":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2018.8566329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents book2vec, a neural network based embedding approach for creating book representations. In this work, a well-known method from natural language processing domain, namely word2vec, is applied to a dataset of the books read by different users from the Goodreads website. Unlike previous works, we use non-textual features, considering only the book IDs. We represent the books read by each user as a sentence where the books' IDs are the words in the sentences. The results show that this approach can find meaningful representation of the books.
Book2Vec:在矢量空间中表示图书而不使用内容
本文提出了book2vec,一种基于神经网络的嵌入方法,用于创建图书表示。在这项工作中,自然语言处理领域的一种众所周知的方法,即word2vec,被应用于Goodreads网站上不同用户阅读的书籍数据集。与以前的作品不同,我们使用非文本特征,只考虑书的id。我们将每个用户阅读的书籍表示为一个句子,其中书籍的id是句子中的单词。结果表明,该方法可以找到有意义的图书表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信