Roulette wheel selection applied to PSO on numerical function in discrete and continuous space

Pimolrat Ounsrimuang, S. Nootyaskool
{"title":"Roulette wheel selection applied to PSO on numerical function in discrete and continuous space","authors":"Pimolrat Ounsrimuang, S. Nootyaskool","doi":"10.1109/TENCONSPRING.2016.7519433","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) successfully finds a solution as shown in various literatures. In some problems creating on discrete space, adjustment control-parameter may be difficult to modify a reach of optimum solution. The paper proposes an approach applying roulette wheel selection to PSO, which can help PSO escape from a local solution. This approach tested on both continuous and discrete space by finding solution of 12-numerical functions and an engineering-problem. The experiment result showed that the proposed technique can help PSO getting the best result both problem spaces, the performance improvement but also maintain easily to implementation.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Particle Swarm Optimization (PSO) successfully finds a solution as shown in various literatures. In some problems creating on discrete space, adjustment control-parameter may be difficult to modify a reach of optimum solution. The paper proposes an approach applying roulette wheel selection to PSO, which can help PSO escape from a local solution. This approach tested on both continuous and discrete space by finding solution of 12-numerical functions and an engineering-problem. The experiment result showed that the proposed technique can help PSO getting the best result both problem spaces, the performance improvement but also maintain easily to implementation.
将轮盘选择应用于离散和连续空间数值函数的粒子群算法
粒子群算法(Particle Swarm Optimization, PSO)成功地找到了问题的解。在一些产生于离散空间上的问题中,调整控制参数可能难以修改到最优解的范围。本文提出了一种将轮盘赌轮选择应用于粒子群算法的方法,该方法可以帮助粒子群算法脱离局部解。该方法通过求解12个数值函数和一个工程问题,在连续和离散空间上进行了验证。实验结果表明,该方法能使粒子群算法在两个问题空间都得到最佳结果,性能得到提高,且易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信