Forecasting Acceleration of Data Transfer with Fog Computing for Resource Efficiency in Data Centers

N. Zendrato, M. Zarlis, O. S. Sitompul, E. M. Zamzami
{"title":"Forecasting Acceleration of Data Transfer with Fog Computing for Resource Efficiency in Data Centers","authors":"N. Zendrato, M. Zarlis, O. S. Sitompul, E. M. Zamzami","doi":"10.1109/DATABIA50434.2020.9190326","DOIUrl":null,"url":null,"abstract":"Accelerate of data transfer always be a problem in fog computing especially workload datacenter This research predicts server performance data on fog computing using linear regression methods. Predictions are made on variables that affect the speed of data transfer namely the number of CPU cores, CPU capacity, memory used based on this variable is used as an attribute and data transfer as a label. With this research the performance of data transfer speeds can be predicted before use. This method provides an improvement in the error value compared of other forecasting methods Thus the process of data transfer in fog computing can be more effective and efficient","PeriodicalId":165106,"journal":{"name":"2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATABIA50434.2020.9190326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerate of data transfer always be a problem in fog computing especially workload datacenter This research predicts server performance data on fog computing using linear regression methods. Predictions are made on variables that affect the speed of data transfer namely the number of CPU cores, CPU capacity, memory used based on this variable is used as an attribute and data transfer as a label. With this research the performance of data transfer speeds can be predicted before use. This method provides an improvement in the error value compared of other forecasting methods Thus the process of data transfer in fog computing can be more effective and efficient
基于雾计算的数据中心资源效率数据传输加速预测
数据传输速度的加快一直是雾计算特别是工作负载数据中心中存在的问题,本研究采用线性回归方法预测雾计算中服务器性能数据。对影响数据传输速度的变量进行预测,即CPU内核的数量,CPU容量,基于此变量使用的内存作为属性和数据传输作为标签。通过本研究,可以在使用前预测数据传输速度的性能。与其他预测方法相比,该方法的误差值有所改善,从而使雾计算中的数据传输过程更加有效和高效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信