Xiao Zhu, Jiachen Sun, Xumiao Zhang, Y. E. Guo, Fengqi Qian, Z. Mao
{"title":"MPBond","authors":"Xiao Zhu, Jiachen Sun, Xumiao Zhang, Y. E. Guo, Fengqi Qian, Z. Mao","doi":"10.1145/3386901.3388943","DOIUrl":null,"url":null,"abstract":"MPBond is an efficient system allowing multiple personal mobile devices to collaboratively fetch content from the Internet. For example, a smartwatch can assist its paired smartphone with downloading data. Inspired by the success of MPTCP, MPBond applies the concept of distributed multipath transport where multiple subflows can traverse different devices. We develop a cross-device connection management scheme, a buffering strategy, a packet scheduling algorithm, and a policy framework tailored to MPBond's architecture. We implement MPBond on commodity mobile devices such as Android smartphones and smartwatches. Our real-world evaluations using different workloads under various network conditions demonstrate the efficiency of MPBond. Compared to state-of-the-art collaboration frameworks, MPBond reduces file download time by 5% to 46%, and improves the video streaming bitrate by 2% to 118%. Meanwhile, it improves the energy efficiency by 10% to 57%.","PeriodicalId":345029,"journal":{"name":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386901.3388943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
MPBond is an efficient system allowing multiple personal mobile devices to collaboratively fetch content from the Internet. For example, a smartwatch can assist its paired smartphone with downloading data. Inspired by the success of MPTCP, MPBond applies the concept of distributed multipath transport where multiple subflows can traverse different devices. We develop a cross-device connection management scheme, a buffering strategy, a packet scheduling algorithm, and a policy framework tailored to MPBond's architecture. We implement MPBond on commodity mobile devices such as Android smartphones and smartwatches. Our real-world evaluations using different workloads under various network conditions demonstrate the efficiency of MPBond. Compared to state-of-the-art collaboration frameworks, MPBond reduces file download time by 5% to 46%, and improves the video streaming bitrate by 2% to 118%. Meanwhile, it improves the energy efficiency by 10% to 57%.