{"title":"Poster Abstract : Directional transmissions and receptions for burst forwarding using disjoint paths","authors":"Ambuj Varshney, T. Voigt, L. Mottola","doi":"10.1109/ipsn.2014.6846776","DOIUrl":null,"url":null,"abstract":"Bulk data transmission is an important traffic pattern of many sensor network applications. These applications deliver large amounts of sensed data to a sink node for further processing. Most of the existing bulk data transmission protocols use a single flow of communication. This is inefficient as the radio at the source node is transmitting and the sink node is receiving packets for only half of the duration of the burst. We show in this paper that reduced contention because of directional communication enables us to construct node disjoint paths from the source to the sink node using only one wireless channel. This allows us to forward subsequent packets in the burst on the disjoint paths which maximises the radio transmit and receive time at the source and the sink node respectively. We demonstrate that this doubles the sink throughput as compared to a single flow of communication.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipsn.2014.6846776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bulk data transmission is an important traffic pattern of many sensor network applications. These applications deliver large amounts of sensed data to a sink node for further processing. Most of the existing bulk data transmission protocols use a single flow of communication. This is inefficient as the radio at the source node is transmitting and the sink node is receiving packets for only half of the duration of the burst. We show in this paper that reduced contention because of directional communication enables us to construct node disjoint paths from the source to the sink node using only one wireless channel. This allows us to forward subsequent packets in the burst on the disjoint paths which maximises the radio transmit and receive time at the source and the sink node respectively. We demonstrate that this doubles the sink throughput as compared to a single flow of communication.