Evaluation of parameters and techniques for genetic algorithm based channel allocation in Cognitive Radio Networks

D. Sharma, Anurag Singh, A. Khanna, Anubhav Jain
{"title":"Evaluation of parameters and techniques for genetic algorithm based channel allocation in Cognitive Radio Networks","authors":"D. Sharma, Anurag Singh, A. Khanna, Anubhav Jain","doi":"10.1109/IC3.2017.8284341","DOIUrl":null,"url":null,"abstract":"Genetic Algorithm is a promising optimization technique for solving the problem of Channel Allocation in Cognitive Radio Networks(CRNs). This work involves exploration of various parameters and techniques used in Genetic Algorithm(GA). The selection of parameters and techniques influence the run-time and ability of genetic algorithm to arrive at a globally optimal solution. Therefore, this paper validates various crossover and mutation techniques to be fit/unfit for use and their effect on convergence of genetic algorithm for optimum channel allocation strategy. Extended version of current genetic algorithm for channel allocation using partial mapped crossover(PMX) is proposed. The simulation results show that PMX crossover is a robust method for dealing with the interference problem encountered in the extended version of the genetic algorithm.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Genetic Algorithm is a promising optimization technique for solving the problem of Channel Allocation in Cognitive Radio Networks(CRNs). This work involves exploration of various parameters and techniques used in Genetic Algorithm(GA). The selection of parameters and techniques influence the run-time and ability of genetic algorithm to arrive at a globally optimal solution. Therefore, this paper validates various crossover and mutation techniques to be fit/unfit for use and their effect on convergence of genetic algorithm for optimum channel allocation strategy. Extended version of current genetic algorithm for channel allocation using partial mapped crossover(PMX) is proposed. The simulation results show that PMX crossover is a robust method for dealing with the interference problem encountered in the extended version of the genetic algorithm.
认知无线网络中基于遗传算法的信道分配参数评估与技术研究
遗传算法是解决认知无线网络中信道分配问题的一种很有前途的优化技术。这项工作涉及探索遗传算法(GA)中使用的各种参数和技术。参数和技术的选择影响遗传算法的运行时间和获得全局最优解的能力。因此,本文验证了各种交叉和突变技术的适合/不适合以及它们对遗传算法收敛性的影响,以获得最优信道分配策略。提出了利用部分映射交叉(PMX)进行信道分配的遗传算法的扩展版本。仿真结果表明,PMX交叉是处理遗传算法扩展版中遇到的干扰问题的一种鲁棒方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信