Carry-Forward Effect: Early scaffolding learning processes

K. Sharma, M. Giannakos
{"title":"Carry-Forward Effect: Early scaffolding learning processes","authors":"K. Sharma, M. Giannakos","doi":"10.1145/3594781.3594786","DOIUrl":null,"url":null,"abstract":"Multimodal data enables us to capture the cognitive and affective states of students to provide a holistic understanding of learning processes in a wide variety of contexts. With the use of sensing technology, we can capture learners’ states in near real-time and support learning. Moreover, multimodal data allows us to obtain early-predictions of learning performance, and support learning in a timely manner. In this contribution, we utilize the notion of “carry forward effect”, an inferential and predictive modelling approach that utilizes multimodal data measurements detrimental to learning performance to provide timely feedback suggestions. carry forward effect can provide a way to prioritize conflicting feedback suggestions in a multimodal data based scaffolding tool. We showcase the empirical proof of carry forward effect with the use of two different learning scenarios: debugging and game-based learning.","PeriodicalId":367346,"journal":{"name":"Proceedings of the 2023 Symposium on Learning, Design and Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Symposium on Learning, Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3594781.3594786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal data enables us to capture the cognitive and affective states of students to provide a holistic understanding of learning processes in a wide variety of contexts. With the use of sensing technology, we can capture learners’ states in near real-time and support learning. Moreover, multimodal data allows us to obtain early-predictions of learning performance, and support learning in a timely manner. In this contribution, we utilize the notion of “carry forward effect”, an inferential and predictive modelling approach that utilizes multimodal data measurements detrimental to learning performance to provide timely feedback suggestions. carry forward effect can provide a way to prioritize conflicting feedback suggestions in a multimodal data based scaffolding tool. We showcase the empirical proof of carry forward effect with the use of two different learning scenarios: debugging and game-based learning.
前移效应:早期脚手架式学习过程
多模态数据使我们能够捕捉学生的认知和情感状态,从而全面了解各种环境下的学习过程。利用传感技术,我们可以近乎实时地捕捉学习者的状态并支持学习。此外,多模态数据使我们能够获得学习表现的早期预测,并及时支持学习。在这篇文章中,我们利用了“结转效应”的概念,这是一种推理和预测建模方法,利用不利于学习绩效的多模态数据测量来提供及时的反馈建议。在基于多模态数据的脚手架工具中,前移效应可以提供一种对冲突反馈建议进行优先排序的方法。我们通过使用两种不同的学习场景:调试和基于游戏的学习来展示结转效应的经验证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信