Decoding of motor intention from Brain EEG signal via local spatial sparse pattern

Xiaofeng Xie, Yao Hou, R. Tang, Yizhen Wang, Songyuan Xiao, Junzhe Huang
{"title":"Decoding of motor intention from Brain EEG signal via local spatial sparse pattern","authors":"Xiaofeng Xie, Yao Hou, R. Tang, Yizhen Wang, Songyuan Xiao, Junzhe Huang","doi":"10.1109/acait53529.2021.9731143","DOIUrl":null,"url":null,"abstract":"In the brain-computer interfaces (BCI) systems of motor imagery, the spatial pattern on global EEG channels were commonly used to identify the motor intention from EEG signal. However, some channels are more important than the others in motor imagery tasks. Thus, the spatial pattern from global EEG channels can not reflect the difference of channels. To enhance the classification performance of motor imagery system, we proposed local sparse common spatial pattern (CSP) method for addressing the problem of channel’s difference frequently arising in BCIs. It constructs local channels based on Euclidean distance and performs joint diagonalization on each local channels to obtain multiple local spatial features. Lastly, we used the group sparse model to select discriminative features from different channels. Experimental evaluations on motor imagery dataset show that the proposed algorithm has higher classification performance than the competing methods.","PeriodicalId":173633,"journal":{"name":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acait53529.2021.9731143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the brain-computer interfaces (BCI) systems of motor imagery, the spatial pattern on global EEG channels were commonly used to identify the motor intention from EEG signal. However, some channels are more important than the others in motor imagery tasks. Thus, the spatial pattern from global EEG channels can not reflect the difference of channels. To enhance the classification performance of motor imagery system, we proposed local sparse common spatial pattern (CSP) method for addressing the problem of channel’s difference frequently arising in BCIs. It constructs local channels based on Euclidean distance and performs joint diagonalization on each local channels to obtain multiple local spatial features. Lastly, we used the group sparse model to select discriminative features from different channels. Experimental evaluations on motor imagery dataset show that the proposed algorithm has higher classification performance than the competing methods.
利用局部空间稀疏模式对脑电信号进行运动意图解码
在运动图像脑机接口(BCI)系统中,通常利用脑电通道的空间模式从脑电信号中识别运动意图。然而,在运动想象任务中,一些通道比其他通道更重要。因此,全局脑电信号通道的空间分布不能反映通道的差异。为了提高运动图像系统的分类性能,提出了局部稀疏公共空间模式(CSP)方法来解决脑机接口中经常出现的通道差异问题。它基于欧几里得距离构造局部通道,并对每个局部通道进行联合对角化,得到多个局部空间特征。最后,利用分组稀疏模型从不同的通道中选择判别特征。在运动图像数据集上的实验评估表明,该算法具有较高的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信