{"title":"Study of Photoactive Materials Used in Photo Electrochemical Cell for Solar Energy Conversion and Storage","authors":"S. Meena","doi":"10.54060/jase.v3i1.40","DOIUrl":null,"url":null,"abstract":"Photoelectrochemical Cell is a device that absorbs light with a high-absorption electrolyte solution and provides energy for photo chemical reactions. Ponceau-S was used as a photosensitizer and EDTA served as a reducing agent in the study of photoelectronchemical cells. The photocurrent and photo potential were 1047.0 mV and 390.0 µA respectively. The highest power of the cell was 84.0 µW, with a conversion efficiency of 1.61%. The fill factor of the cell was 0.20. The photoelectric cell can function at this power level for 240.0 minutes in storage (performance). The effects of various parameters on the cell's electrical output were observed. In this study, a mechanism for photocurrent generation in Photoelectrochemical cells is proposed.","PeriodicalId":434252,"journal":{"name":"Journal of Applied Science and Education (JASE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Science and Education (JASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54060/jase.v3i1.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectrochemical Cell is a device that absorbs light with a high-absorption electrolyte solution and provides energy for photo chemical reactions. Ponceau-S was used as a photosensitizer and EDTA served as a reducing agent in the study of photoelectronchemical cells. The photocurrent and photo potential were 1047.0 mV and 390.0 µA respectively. The highest power of the cell was 84.0 µW, with a conversion efficiency of 1.61%. The fill factor of the cell was 0.20. The photoelectric cell can function at this power level for 240.0 minutes in storage (performance). The effects of various parameters on the cell's electrical output were observed. In this study, a mechanism for photocurrent generation in Photoelectrochemical cells is proposed.