An efficient proximity probing algorithm for metrology

S. Panahi, Aviv Adler, A.F. van der Stappen, Ken Goldberg
{"title":"An efficient proximity probing algorithm for metrology","authors":"S. Panahi, Aviv Adler, A.F. van der Stappen, Ken Goldberg","doi":"10.1109/coase.2013.6653995","DOIUrl":null,"url":null,"abstract":"Metrology, the theoretical and practical study of measurement, has applications in automated manufacturing, inspection, robotics, surveying, and healthcare. An important problem within metrology is how to interactively use a measuring device, or probe, to determine some geometric property of an unknown object; this problem is known as geometric probing. In this paper, we study a type of proximity probe which, given a point, returns the distance to the boundary of the object in question. We consider the case where the object is a convex polygon P in the plane, and the goal of the algorithm is to minimize the upper bound on the number of measurements necessary to exactly determine P. We show an algorithm which has an upper bound of 3.5n + k + 2 measurements necessary, where n is the number of vertices and k ≤ 3 is the number of acute angles of P. Furthermore, we show that our algorithm requires O(1) computations per probe, and hence O(n) time to determine P.","PeriodicalId":191166,"journal":{"name":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/coase.2013.6653995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Metrology, the theoretical and practical study of measurement, has applications in automated manufacturing, inspection, robotics, surveying, and healthcare. An important problem within metrology is how to interactively use a measuring device, or probe, to determine some geometric property of an unknown object; this problem is known as geometric probing. In this paper, we study a type of proximity probe which, given a point, returns the distance to the boundary of the object in question. We consider the case where the object is a convex polygon P in the plane, and the goal of the algorithm is to minimize the upper bound on the number of measurements necessary to exactly determine P. We show an algorithm which has an upper bound of 3.5n + k + 2 measurements necessary, where n is the number of vertices and k ≤ 3 is the number of acute angles of P. Furthermore, we show that our algorithm requires O(1) computations per probe, and hence O(n) time to determine P.
一种高效的计量接近探测算法
计量学是测量的理论和实践研究,在自动化制造、检测、机器人、测量和医疗保健等领域都有应用。计量学中的一个重要问题是如何交互地使用测量装置或探头来确定未知物体的某些几何特性;这个问题被称为几何探测。在本文中,我们研究了一类接近探头,给定一个点,返回到目标边界的距离。我们考虑的对象是一个凸多边形P在平面上,和该算法的目标是最小化的数量上限的测量必须准确确定P .我们展示一个算法的上限为3.5 n + k + 2测量必要,其中n是顶点的数量和k≤3是锐角的数量的P .此外,我们表明,我们的算法需要O(1)计算每调查,从而确定P O (n)时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信