Automatic Feature Detection and Classification for Watermelon (Citrillus lanatus)

J. Sánchez-Galán, Anel Henry Royo, K. Jo, Danilo Cáceres Hernández
{"title":"Automatic Feature Detection and Classification for Watermelon (Citrillus lanatus)","authors":"J. Sánchez-Galán, Anel Henry Royo, K. Jo, Danilo Cáceres Hernández","doi":"10.1109/IWIS56333.2022.9920868","DOIUrl":null,"url":null,"abstract":"This document focuses on the contributions made in the development and advances achieved in the task of automatic Feature Detection for Watermelon (Citrillus lanatus). A special interest is given to feature-based methods such as: morphological and adaptive threshold approaches, that work by extracting color and texture information. A first hand example about how these two methods can be applied to a data set comprised in export level watermelons coming from Panama is provided. Limitations of the method are discussed and a final conclusion about the field and recent avenues of work with ensemble methods is given. The importance of this document is that it helps the automatic understanding of watermelon patterns with computer vision.","PeriodicalId":340399,"journal":{"name":"2022 International Workshop on Intelligent Systems (IWIS)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Intelligent Systems (IWIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIS56333.2022.9920868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This document focuses on the contributions made in the development and advances achieved in the task of automatic Feature Detection for Watermelon (Citrillus lanatus). A special interest is given to feature-based methods such as: morphological and adaptive threshold approaches, that work by extracting color and texture information. A first hand example about how these two methods can be applied to a data set comprised in export level watermelons coming from Panama is provided. Limitations of the method are discussed and a final conclusion about the field and recent avenues of work with ensemble methods is given. The importance of this document is that it helps the automatic understanding of watermelon patterns with computer vision.
西瓜特征自动检测与分类
本文主要介绍了西瓜(Citrillus lanatus)特征自动检测的发展和取得的进展。特别关注基于特征的方法,如形态学和自适应阈值方法,它们通过提取颜色和纹理信息来工作。提供了一个关于如何将这两种方法应用于来自巴拿马的出口级西瓜数据集的第一手示例。讨论了该方法的局限性,最后总结了集成方法的研究领域和最新研究方向。该文档的重要性在于它有助于计算机视觉对西瓜图案的自动理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信