Parallel clustering of large data set on Hadoop using data mining techniques

K. S. Chaturbhuj, Gauri Chaudhary
{"title":"Parallel clustering of large data set on Hadoop using data mining techniques","authors":"K. S. Chaturbhuj, Gauri Chaudhary","doi":"10.1109/STARTUP.2016.7583955","DOIUrl":null,"url":null,"abstract":"Traditional data processing techniques are not enough to handle rapidly growing data. Hadoop can be used for processing such large data. K-means is the traditional clustering method which is simple, scalable and can easily implement but K-means converges to local minima from starting position and sensitive to initial centers. K-means required number of clusters in advance. Particle Swarm Optimization i.e PSO is mimic behavior based algorithm used to introduce the connectivity principle in the centroid based clustering algorithm that will gives optimum centroid and hence find better clusters. We used PSO for finding initial centroids and K-means to find better clusters. Hadoop is used for fast and parallel processing of large datasets.","PeriodicalId":355852,"journal":{"name":"2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STARTUP.2016.7583955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Traditional data processing techniques are not enough to handle rapidly growing data. Hadoop can be used for processing such large data. K-means is the traditional clustering method which is simple, scalable and can easily implement but K-means converges to local minima from starting position and sensitive to initial centers. K-means required number of clusters in advance. Particle Swarm Optimization i.e PSO is mimic behavior based algorithm used to introduce the connectivity principle in the centroid based clustering algorithm that will gives optimum centroid and hence find better clusters. We used PSO for finding initial centroids and K-means to find better clusters. Hadoop is used for fast and parallel processing of large datasets.
利用数据挖掘技术在Hadoop上实现大数据集的并行聚类
传统的数据处理技术不足以处理快速增长的数据。Hadoop可以用来处理如此大的数据。K-means是传统的聚类方法,具有简单、可扩展、易于实现的特点,但K-means从起始位置收敛到局部极小值,对初始中心敏感。k -表示所需的簇数。粒子群优化(Particle Swarm Optimization, PSO)是一种基于模拟行为的算法,它将连通性原理引入到基于质心的聚类算法中,从而给出最优质心,从而找到更好的聚类。我们使用PSO来寻找初始质心,使用K-means来寻找更好的聚类。Hadoop用于快速并行处理大型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信