Effect of Measurement Noise on Reconstruction using Machine Learning with Electrical Tomography in the Case of the Abdominal Cavity

Bartłomiej Baran, Bartosz Przysucha, T. Rymarczyk, D. Wójcik
{"title":"Effect of Measurement Noise on Reconstruction using Machine Learning with Electrical Tomography in the Case of the Abdominal Cavity","authors":"Bartłomiej Baran, Bartosz Przysucha, T. Rymarczyk, D. Wójcik","doi":"10.1109/IIPhDW54739.2023.10124426","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the reconstruction efficiency obtained by the least angle regression (LARS) and Elastic Net algorithms using electrical impedance tomography (EIT). Furthermore, we investigate the impact of measurement noise on the quality of reconstruction obtained by the more efficient algorithm. We reveal the relationship between the quality of reconstruction and the magnitude of information loss in a data frame. This study was conducted on a dataset representing EIT measurements for a cross-section of the abdomen at the bladder level. The simulated dataset contains 10,000 different measurement examples for a different number of inclusions.","PeriodicalId":396821,"journal":{"name":"2023 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPhDW54739.2023.10124426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we compare the reconstruction efficiency obtained by the least angle regression (LARS) and Elastic Net algorithms using electrical impedance tomography (EIT). Furthermore, we investigate the impact of measurement noise on the quality of reconstruction obtained by the more efficient algorithm. We reveal the relationship between the quality of reconstruction and the magnitude of information loss in a data frame. This study was conducted on a dataset representing EIT measurements for a cross-section of the abdomen at the bladder level. The simulated dataset contains 10,000 different measurement examples for a different number of inclusions.
测量噪声对腹部电断层成像机器学习重建的影响
在本文中,我们比较了最小角度回归(LARS)和弹性网(Elastic Net)算法在电阻抗层析成像(EIT)中的重建效率。此外,我们还研究了测量噪声对更有效算法所获得的重建质量的影响。我们揭示了重建质量与数据帧中信息损失的大小之间的关系。本研究是在一个数据集上进行的,该数据集代表了膀胱水平腹部横截面的EIT测量。模拟数据集包含不同数量的包含物的10,000个不同的测量示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信