Conditional LS-GAN Based Skylight Polarization Image Restoration and Application in Meridian Localization

T. Yang, Hongbo Bo, Xinyu Yang, Jun Gao, Zijian Shi
{"title":"Conditional LS-GAN Based Skylight Polarization Image Restoration and Application in Meridian Localization","authors":"T. Yang, Hongbo Bo, Xinyu Yang, Jun Gao, Zijian Shi","doi":"10.1109/ICASSP49357.2023.10096855","DOIUrl":null,"url":null,"abstract":"Skylight polarization images (SPIs) contain crucial spatial information that can be used for navigation purposes. Under most circumstances, the quality of the images becomes a major concern, especially when there is blocking between the perception equipment and the sky. This paper introduces a deep learning-based methodology for restoring SPIs and utilizing the restored images for navigation. First, an adversarial training paradigm is adopted to restore the SPIs collected in a severe blocking environment. We utilize a self-developed simulation method that uses solar altitude and azimuth angle to generate ground truth, and no prior knowledge of the masking information for noise is used. Second, we show how to locate the meridian based on the restored SPIs using a residual neural network. In experiments, we demonstrate the superiority of the proposed model in restoring SPIs, and the enhanced meridian localization precision by using the restored SPIs.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Skylight polarization images (SPIs) contain crucial spatial information that can be used for navigation purposes. Under most circumstances, the quality of the images becomes a major concern, especially when there is blocking between the perception equipment and the sky. This paper introduces a deep learning-based methodology for restoring SPIs and utilizing the restored images for navigation. First, an adversarial training paradigm is adopted to restore the SPIs collected in a severe blocking environment. We utilize a self-developed simulation method that uses solar altitude and azimuth angle to generate ground truth, and no prior knowledge of the masking information for noise is used. Second, we show how to locate the meridian based on the restored SPIs using a residual neural network. In experiments, we demonstrate the superiority of the proposed model in restoring SPIs, and the enhanced meridian localization precision by using the restored SPIs.
基于条件LS-GAN的天窗偏振图像恢复及其在子午线定位中的应用
天窗偏振图像(SPIs)包含重要的空间信息,可用于导航目的。在大多数情况下,图像的质量成为一个主要问题,特别是当感知设备和天空之间有遮挡时。本文介绍了一种基于深度学习的方法来恢复spi并利用恢复的图像进行导航。首先,采用对抗训练范式对在严重阻塞环境中收集的spi进行恢复。我们利用自主开发的模拟方法,利用太阳高度和方位角来生成地面真值,而不使用噪声掩蔽信息的先验知识。其次,我们展示了如何使用残差神经网络基于恢复的spi来定位子午线。在实验中,我们证明了该模型在恢复SPIs方面的优越性,并利用恢复的SPIs提高了子午线定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信