Understanding the effects of electric vehicle charging on the distribution voltages

A. Dubey, S. Santoso, M. Cloud
{"title":"Understanding the effects of electric vehicle charging on the distribution voltages","authors":"A. Dubey, S. Santoso, M. Cloud","doi":"10.1109/PESMG.2013.6672557","DOIUrl":null,"url":null,"abstract":"This paper evaluates effects of the distribution circuit parameters on the primary and secondary circuit voltages due to EV loads. The distribution circuit parameters considered here are; location of the service transformer with respect to the substation and location of the EV loads within the secondary service. The voltage analysis is carried out using a 13.8 kV distribution feeder dominated by residential loads. The study reveals that EV charging affects the secondary voltage more significantly than the primary voltage. The short-circuit capacity even at the remote end of the primary distribution line is adequately high; hence, preventing EV loads from affecting its primary voltage. When four 240V/16A EV loads in a secondary service nearby and remote from the substation are charging, the additional voltage drops in their respective primary voltages are 0.023% and 0.13%. However, because the short-circuit capacity at the secondary service wire for both locations (remote/nearby) is significantly lower, additional voltage drops of approximately 4.5% occur in the secondary service voltages. The study also reveals that a single EV load installed on a distant load node from a service transformer leads to comparatively higher additional voltage drop (1.7%) than an EV on a nearby load node (0.81%) in the same secondary service.","PeriodicalId":433870,"journal":{"name":"2013 IEEE Power & Energy Society General Meeting","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESMG.2013.6672557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper evaluates effects of the distribution circuit parameters on the primary and secondary circuit voltages due to EV loads. The distribution circuit parameters considered here are; location of the service transformer with respect to the substation and location of the EV loads within the secondary service. The voltage analysis is carried out using a 13.8 kV distribution feeder dominated by residential loads. The study reveals that EV charging affects the secondary voltage more significantly than the primary voltage. The short-circuit capacity even at the remote end of the primary distribution line is adequately high; hence, preventing EV loads from affecting its primary voltage. When four 240V/16A EV loads in a secondary service nearby and remote from the substation are charging, the additional voltage drops in their respective primary voltages are 0.023% and 0.13%. However, because the short-circuit capacity at the secondary service wire for both locations (remote/nearby) is significantly lower, additional voltage drops of approximately 4.5% occur in the secondary service voltages. The study also reveals that a single EV load installed on a distant load node from a service transformer leads to comparatively higher additional voltage drop (1.7%) than an EV on a nearby load node (0.81%) in the same secondary service.
了解电动汽车充电对配电电压的影响
本文评价了配电线路参数对电动汽车负荷下一次回路和二次回路电压的影响。这里考虑的配电电路参数有;服务变压器相对于变电站的位置以及辅助服务中EV负载的位置。电压分析采用以住宅负荷为主的13.8 kV配电馈线进行。研究表明,电动汽车充电对二次电压的影响比对一次电压的影响更显著。即使在一次配电线路的远端,短路容量也足够高;因此,防止EV负载影响其一次电压。在离变电站较近和较远的一次业务中,4个240V/16A EV负载充电时,其一次电压的附加电压降分别为0.023%和0.13%。然而,由于两个位置(远/近)的次级业务线的短路容量明显较低,次级业务电压会出现大约4.5%的额外电压下降。研究还表明,在同一次要服务中,安装在远离服务变压器的负载节点上的单个电动汽车负载比安装在附近负载节点上的电动汽车(0.81%)的附加电压降相对较高(1.7%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信