Speech Based Emotion Recognition

Preeti Chawaj, S. R. Khot
{"title":"Speech Based Emotion Recognition","authors":"Preeti Chawaj, S. R. Khot","doi":"10.23883/ijrter.2019.5069.se0h6","DOIUrl":null,"url":null,"abstract":"This paper presents a method to identify the emotion of an audio segment with an intention to recognize human emotional/mental status. Four features namely energy, pitch, Formants, Mel frequency cepstral coefficients (MFCC) and their derivatives are used to recognize emotions such as fear, anger, happiness and sadness. PCA is used to reduce the feature dimensionality. Support vector machine is implemented to perform the emotional state classification. The overall recognition rate obtained is 84.99% using samples of Berlin emotional speech database. Keywords—MFCC, Formants, Pitch, Energy, PCA, Support Vector Machine (SVM)","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5069.se0h6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method to identify the emotion of an audio segment with an intention to recognize human emotional/mental status. Four features namely energy, pitch, Formants, Mel frequency cepstral coefficients (MFCC) and their derivatives are used to recognize emotions such as fear, anger, happiness and sadness. PCA is used to reduce the feature dimensionality. Support vector machine is implemented to perform the emotional state classification. The overall recognition rate obtained is 84.99% using samples of Berlin emotional speech database. Keywords—MFCC, Formants, Pitch, Energy, PCA, Support Vector Machine (SVM)
基于语音的情感识别
本文提出了一种识别音频片段情感的方法,旨在识别人类的情感/精神状态。利用能量、音高、共振峰、频率倒谱系数(MFCC)及其衍生物四个特征来识别恐惧、愤怒、快乐和悲伤等情绪。采用主成分分析法对特征进行降维。采用支持向量机进行情绪状态分类。使用柏林情感语音数据库的样本,得到的整体识别率为84.99%。关键词:mfcc,共振峰,基音,能量,主成分分析,支持向量机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信