Implementation of point addition & point doubling for Elliptic Curve

Megha M. Panchbhai, U. Ghodeswar
{"title":"Implementation of point addition & point doubling for Elliptic Curve","authors":"Megha M. Panchbhai, U. Ghodeswar","doi":"10.1109/ICCSP.2015.7322589","DOIUrl":null,"url":null,"abstract":"This paper describes the verilog implementation of point addition and doubling used in Elliptic Curve Point Multiplication. Based on the theory of Elliptic Curve Cryptography, this paper has carried out modular addition, Elliptic Curve Point doubling and addition, modular squaring and projective to affine coordinates system. Elliptical Curve Cryptography is a public key encryption technique depend on elliptic curve theory. It can be used to make faster, smaller, and more efficient cryptographic keys. ECC generate key through the properties of the elliptic curve equation. Key is designed using scalar point multiplication algorithm, applying digit-serial computation with the help of Galois Field multiplication. For digit serial computations, there are various methods. Out of which target planned is to develop Montgomery ladder Point algorithm using projective coordinate system over Galois Field. The desired objective is to design circuit of multiplier using scalar point multiplication algorithm in GF (2m) for Elliptic Curve Cryptography using Xilinx.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper describes the verilog implementation of point addition and doubling used in Elliptic Curve Point Multiplication. Based on the theory of Elliptic Curve Cryptography, this paper has carried out modular addition, Elliptic Curve Point doubling and addition, modular squaring and projective to affine coordinates system. Elliptical Curve Cryptography is a public key encryption technique depend on elliptic curve theory. It can be used to make faster, smaller, and more efficient cryptographic keys. ECC generate key through the properties of the elliptic curve equation. Key is designed using scalar point multiplication algorithm, applying digit-serial computation with the help of Galois Field multiplication. For digit serial computations, there are various methods. Out of which target planned is to develop Montgomery ladder Point algorithm using projective coordinate system over Galois Field. The desired objective is to design circuit of multiplier using scalar point multiplication algorithm in GF (2m) for Elliptic Curve Cryptography using Xilinx.
椭圆曲线点加法和点加倍的实现
本文描述了椭圆曲线点乘法中点加法和加倍的verilog实现。本文以椭圆曲线密码学理论为基础,对仿射坐标系进行了模加法、椭圆曲线点的加倍和加法、模平方和投影。椭圆曲线加密是一种基于椭圆曲线理论的公钥加密技术。它可以用来制作更快、更小、更有效的加密密钥。利用椭圆曲线方程的性质生成密钥。密钥设计采用标量点乘法算法,利用伽罗瓦域乘法进行数字串行计算。对于数字串行计算,有多种方法。其中目标是在伽罗瓦场上使用射影坐标系开发蒙哥马利阶梯点算法。期望的目标是利用GF (2m)中的标量点乘法算法设计乘法器电路,用于Xilinx的椭圆曲线加密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信