Kai Fan, Marisa C. Eisenberg, Alison Walsh, A. Aiello, K. Heller
{"title":"Hierarchical Graph-Coupled HMMs for Heterogeneous Personalized Health Data","authors":"Kai Fan, Marisa C. Eisenberg, Alison Walsh, A. Aiello, K. Heller","doi":"10.1145/2783258.2783326","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to leverage modern technology (mobile or web apps) to enrich epidemiology data and infer the transmission of disease. We develop hierarchical Graph-Coupled Hidden Markov Models (hGCHMMs) to simultaneously track the spread of infection in a small cell phone community and capture person-specific infection parameters by leveraging a link prior that incorporates additional covariates. In this paper we investigate two link functions, the beta-exponential link and sigmoid link, both of which allow the development of a principled Bayesian hierarchical framework for disease transmission. The results of our model allow us to predict the probability of infection for each persons on each day, and also to infer personal physical vulnerability and the relevant association with covariates. We demonstrate our approach theoretically and experimentally on both simulation data and real epidemiological records.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The purpose of this study is to leverage modern technology (mobile or web apps) to enrich epidemiology data and infer the transmission of disease. We develop hierarchical Graph-Coupled Hidden Markov Models (hGCHMMs) to simultaneously track the spread of infection in a small cell phone community and capture person-specific infection parameters by leveraging a link prior that incorporates additional covariates. In this paper we investigate two link functions, the beta-exponential link and sigmoid link, both of which allow the development of a principled Bayesian hierarchical framework for disease transmission. The results of our model allow us to predict the probability of infection for each persons on each day, and also to infer personal physical vulnerability and the relevant association with covariates. We demonstrate our approach theoretically and experimentally on both simulation data and real epidemiological records.