Hierarchical Graph-Coupled HMMs for Heterogeneous Personalized Health Data

Kai Fan, Marisa C. Eisenberg, Alison Walsh, A. Aiello, K. Heller
{"title":"Hierarchical Graph-Coupled HMMs for Heterogeneous Personalized Health Data","authors":"Kai Fan, Marisa C. Eisenberg, Alison Walsh, A. Aiello, K. Heller","doi":"10.1145/2783258.2783326","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to leverage modern technology (mobile or web apps) to enrich epidemiology data and infer the transmission of disease. We develop hierarchical Graph-Coupled Hidden Markov Models (hGCHMMs) to simultaneously track the spread of infection in a small cell phone community and capture person-specific infection parameters by leveraging a link prior that incorporates additional covariates. In this paper we investigate two link functions, the beta-exponential link and sigmoid link, both of which allow the development of a principled Bayesian hierarchical framework for disease transmission. The results of our model allow us to predict the probability of infection for each persons on each day, and also to infer personal physical vulnerability and the relevant association with covariates. We demonstrate our approach theoretically and experimentally on both simulation data and real epidemiological records.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The purpose of this study is to leverage modern technology (mobile or web apps) to enrich epidemiology data and infer the transmission of disease. We develop hierarchical Graph-Coupled Hidden Markov Models (hGCHMMs) to simultaneously track the spread of infection in a small cell phone community and capture person-specific infection parameters by leveraging a link prior that incorporates additional covariates. In this paper we investigate two link functions, the beta-exponential link and sigmoid link, both of which allow the development of a principled Bayesian hierarchical framework for disease transmission. The results of our model allow us to predict the probability of infection for each persons on each day, and also to infer personal physical vulnerability and the relevant association with covariates. We demonstrate our approach theoretically and experimentally on both simulation data and real epidemiological records.
异构个性化健康数据的分层图耦合hmm
本研究的目的是利用现代技术(移动或网络应用程序)来丰富流行病学数据并推断疾病的传播。我们开发了分层图耦合隐马尔可夫模型(hgchmm),以同时跟踪感染在小型手机社区的传播,并通过利用包含额外协变量的先验链接捕获个人特异性感染参数。在本文中,我们研究了两个链接函数,β指数链接和s型链接,这两个链接都允许开发一个原则贝叶斯层次框架的疾病传播。我们的模型的结果使我们能够预测每个人每天的感染概率,也可以推断个人的身体脆弱性以及与协变量的相关关联。我们在模拟数据和真实流行病学记录上从理论上和实验上证明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信