A Robust Online Multi-Face Tracking System

Martin Soldic, Darijan Marcetic, S. Ribaric
{"title":"A Robust Online Multi-Face Tracking System","authors":"Martin Soldic, Darijan Marcetic, S. Ribaric","doi":"10.23919/ELMAR.2018.8534679","DOIUrl":null,"url":null,"abstract":"This paper presents a system for robust online multi-face tracking in video sequences recorded by a stationary camera. Several components and algorithms are combined in the system architecture: an NPD robust face detector, a DSST tracker augmented with FIFO long- and short-term memories (LTMs/STMs), trajectory memories (TMs), a PSR-based tracking failure detector and a Hungarian algorithm for trajectory assignment. The paper gives the preliminary experimental results, expressed by MOTA, MOTP and IDS metrics, obtained on the benchmark dataset consisting of three videos.","PeriodicalId":175742,"journal":{"name":"2018 International Symposium ELMAR","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELMAR.2018.8534679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a system for robust online multi-face tracking in video sequences recorded by a stationary camera. Several components and algorithms are combined in the system architecture: an NPD robust face detector, a DSST tracker augmented with FIFO long- and short-term memories (LTMs/STMs), trajectory memories (TMs), a PSR-based tracking failure detector and a Hungarian algorithm for trajectory assignment. The paper gives the preliminary experimental results, expressed by MOTA, MOTP and IDS metrics, obtained on the benchmark dataset consisting of three videos.
鲁棒在线多人脸跟踪系统
提出了一种基于静止摄像机的视频序列鲁棒在线多人脸跟踪系统。系统架构中结合了几个组件和算法:NPD鲁棒人脸检测器,DSST跟踪器,增强了FIFO长短期记忆(LTMs/STMs),轨迹记忆(TMs),基于psr的跟踪故障检测器和匈牙利轨迹分配算法。本文给出了在由三个视频组成的基准数据集上获得的以MOTA、MOTP和IDS指标表示的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信