Machine Learning Techniques for Permission-based Malware Detection in Android Applications

I. Khan, Zahoor Ali Khan, Mir Ahmad, A. Khan, Fida Muahmmad, Azhar Imran, Sheeraz Ahmed, Muhammad Khalid Hamid
{"title":"Machine Learning Techniques for Permission-based Malware Detection in Android Applications","authors":"I. Khan, Zahoor Ali Khan, Mir Ahmad, A. Khan, Fida Muahmmad, Azhar Imran, Sheeraz Ahmed, Muhammad Khalid Hamid","doi":"10.1109/ITT59889.2023.10184260","DOIUrl":null,"url":null,"abstract":"Most smartphones and tablets have either been produced or are about to be released, and the Android operating system is swiftly gaining market share. These days, customers utilize Android applications often for a broad variety of tasks. As a result, attackers now frequently target the Android platform. Many harmful applications have been discovered in Information technology, and they frequently act maliciously in ways that don't correspond to their intended characteristics. Therefore, it's essential to identify harmful Android applications. This article describes multiple techniques for identifying fraudulent programmers using app permissions.","PeriodicalId":223578,"journal":{"name":"2023 9th International Conference on Information Technology Trends (ITT)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Information Technology Trends (ITT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITT59889.2023.10184260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most smartphones and tablets have either been produced or are about to be released, and the Android operating system is swiftly gaining market share. These days, customers utilize Android applications often for a broad variety of tasks. As a result, attackers now frequently target the Android platform. Many harmful applications have been discovered in Information technology, and they frequently act maliciously in ways that don't correspond to their intended characteristics. Therefore, it's essential to identify harmful Android applications. This article describes multiple techniques for identifying fraudulent programmers using app permissions.
Android应用中基于权限的恶意软件检测的机器学习技术
大多数智能手机和平板电脑要么已经生产出来,要么即将发布,安卓操作系统正在迅速获得市场份额。如今,用户经常使用Android应用程序来完成各种各样的任务。因此,攻击者现在经常以Android平台为目标。在信息技术中已经发现了许多有害的应用程序,并且它们经常以不符合其预期特征的方式恶意运行。因此,识别有害的Android应用程序至关重要。本文介绍了使用应用程序权限识别欺诈程序员的多种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信