Fuzzy oscillometric blood pressure classification

S. Colak, C. Isik
{"title":"Fuzzy oscillometric blood pressure classification","authors":"S. Colak, C. Isik","doi":"10.1109/NAFIPS.2003.1226783","DOIUrl":null,"url":null,"abstract":"Classification of systolic, mean and diastolic blood pressure profiles using the oscillometric method is a difficult process. Generally, the algorithms aim at extracting some parameters such as height, and ratios of the pulses at certain pressure levels, which are obtained from the cuff pressure. These parameters can be used to form profiles to relate to blood pressures. The effectiveness of the classification depends on many factors, such as environmental noise, white coat effect, heart rate variability and motion artifacts. In this paper, we investigate the effectiveness of a neuro-fuzzy approach to blood pressure classification. We employ feature extraction using principal component analysis, and fuzzy sets to classify pressure profiles.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Classification of systolic, mean and diastolic blood pressure profiles using the oscillometric method is a difficult process. Generally, the algorithms aim at extracting some parameters such as height, and ratios of the pulses at certain pressure levels, which are obtained from the cuff pressure. These parameters can be used to form profiles to relate to blood pressures. The effectiveness of the classification depends on many factors, such as environmental noise, white coat effect, heart rate variability and motion artifacts. In this paper, we investigate the effectiveness of a neuro-fuzzy approach to blood pressure classification. We employ feature extraction using principal component analysis, and fuzzy sets to classify pressure profiles.
模糊振荡血压分级
用示波法对收缩压、平均压和舒张压进行分类是一个困难的过程。一般来说,算法的目的是提取一些参数,如高度,在一定压力水平下脉冲的比率,这些参数是由袖带压力得到的。这些参数可用于形成与血压相关的剖面图。分类的有效性取决于许多因素,如环境噪声、白大衣效应、心率变异性和运动伪影。在本文中,我们研究了神经模糊方法对血压分类的有效性。我们使用主成分分析的特征提取和模糊集对压力剖面进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信