{"title":"U-Net based Semantic Segmentation for Touchless Fingerprint Technology: A Reflective Review","authors":"Puneet Nahar, Preeti Gupta, Harvinder Kaur","doi":"10.1109/IATMSI56455.2022.10119359","DOIUrl":null,"url":null,"abstract":"Touch-based fingerprints are widely used in today's world; even with all the success, the touch-based nature of these is a threat, especially in this COVID-19 period. A solution to the same is the introduction of Touchless Fingerprint Technology. The workflow of a touchless system varies vastly from its touch-based counterpart in terms of acquisition, pre-processing, image enhancement, and fingerprint verification. One significant difference is the methods used to segment desired fingerprint regions. This literature focuses on pixel-level classification or semantic segmentation using U-Net, a key yet challenging task. A plethora of semantic segmentation methods have been applied in this field. In this literature, a spectrum of efforts in the field of semantic segmentation using U-Net is investigated along with the components that are integral while training and testing a model, like optimizers, loss functions, and metrics used for evaluation and enumeration of results obtained.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Touch-based fingerprints are widely used in today's world; even with all the success, the touch-based nature of these is a threat, especially in this COVID-19 period. A solution to the same is the introduction of Touchless Fingerprint Technology. The workflow of a touchless system varies vastly from its touch-based counterpart in terms of acquisition, pre-processing, image enhancement, and fingerprint verification. One significant difference is the methods used to segment desired fingerprint regions. This literature focuses on pixel-level classification or semantic segmentation using U-Net, a key yet challenging task. A plethora of semantic segmentation methods have been applied in this field. In this literature, a spectrum of efforts in the field of semantic segmentation using U-Net is investigated along with the components that are integral while training and testing a model, like optimizers, loss functions, and metrics used for evaluation and enumeration of results obtained.