Bio-mimetic strategies for tactile sensing

W. W. Lee, J. Cabibihan, N. Thakor
{"title":"Bio-mimetic strategies for tactile sensing","authors":"W. W. Lee, J. Cabibihan, N. Thakor","doi":"10.1109/ICSENS.2013.6688260","DOIUrl":null,"url":null,"abstract":"In this work, a tactile sensing system is built for pattern recognition using spiking neurons. Tactile information is acquired using a fabric based binary tactile sensor array and converted into spatiotemporal spiking patterns that mimic mechanoreceptors in the skin. Through physical experiments, we show that the spike patterns efficiently represent information such as local curvature of objects in contact, which are easily distinguished using a supervised spike-timing based learning algorithm. High classification accuracy (>99%) and fast convergence rate (tens of epochs) of the classifier indicates good separation between different stimuli using the spatiotemporal spike representation.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this work, a tactile sensing system is built for pattern recognition using spiking neurons. Tactile information is acquired using a fabric based binary tactile sensor array and converted into spatiotemporal spiking patterns that mimic mechanoreceptors in the skin. Through physical experiments, we show that the spike patterns efficiently represent information such as local curvature of objects in contact, which are easily distinguished using a supervised spike-timing based learning algorithm. High classification accuracy (>99%) and fast convergence rate (tens of epochs) of the classifier indicates good separation between different stimuli using the spatiotemporal spike representation.
触觉感知的仿生策略
在这项工作中,一个触觉传感系统建立了模式识别使用尖峰神经元。使用基于织物的二元触觉传感器阵列获取触觉信息,并将其转换为模拟皮肤机械感受器的时空尖峰模式。通过物理实验,我们证明了尖峰模式有效地表示了接触物体的局部曲率等信息,这些信息很容易使用基于监督尖峰时序的学习算法进行区分。该分类器分类准确率高(>99%),收敛速度快(数十个epoch),表明该分类器利用时空尖峰表征对不同刺激进行了较好的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信