V. Rakovic, K. Hsu, Ketan Bhardwaj, Ada Gavrilovska, L. Gavrilovska
{"title":"ShapeShifter: Resolving the Hidden Latency Contention Problem in MEC","authors":"V. Rakovic, K. Hsu, Ketan Bhardwaj, Ada Gavrilovska, L. Gavrilovska","doi":"10.1109/SEC54971.2022.00026","DOIUrl":null,"url":null,"abstract":"Mobile Edge Computing (MEC) creates new infrastructure at the edges of the mobile networks, thus providing transformative opportunities for applications seeking latency benefits by operating closer to end-users and devices. However, the reduced network distance between the application endpoints of the MEC flows causes pattern shifts in the packet bursts exchanged at the network edges. The longer and denser bursts create a new source of contention that is not considered by current solutions. As a result, naively collocating applications onto the MEC tier can negatively affect latency-critical workloads, resulting in up to 73% packets experiencing as much as 3.8x increased latency. This makes it impossible to support latency-centric SLOs in MEC, obviating its expected benefits from MEC. This paper is the first to describe this new contention point in mobile networks and its potentially crippling impact on the achievable latency benefit from MEC. We propose ShapeShifter, a new component in the MEC architecture which solves the MEC latency contention problem through adaptive latency-centric burst management of MEC flows. ShapeShifter is effective - it eliminates SLO violations for latency-critical applications and improves application performance in multi-tenant scenarios by up to 3.8 x – and practical – it can be deployed with minimal disruption to the current mobile network ecosystem.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Mobile Edge Computing (MEC) creates new infrastructure at the edges of the mobile networks, thus providing transformative opportunities for applications seeking latency benefits by operating closer to end-users and devices. However, the reduced network distance between the application endpoints of the MEC flows causes pattern shifts in the packet bursts exchanged at the network edges. The longer and denser bursts create a new source of contention that is not considered by current solutions. As a result, naively collocating applications onto the MEC tier can negatively affect latency-critical workloads, resulting in up to 73% packets experiencing as much as 3.8x increased latency. This makes it impossible to support latency-centric SLOs in MEC, obviating its expected benefits from MEC. This paper is the first to describe this new contention point in mobile networks and its potentially crippling impact on the achievable latency benefit from MEC. We propose ShapeShifter, a new component in the MEC architecture which solves the MEC latency contention problem through adaptive latency-centric burst management of MEC flows. ShapeShifter is effective - it eliminates SLO violations for latency-critical applications and improves application performance in multi-tenant scenarios by up to 3.8 x – and practical – it can be deployed with minimal disruption to the current mobile network ecosystem.