On the Cauchy Problem for the Biharmonic Equation

D. Shodiev
{"title":"On the Cauchy Problem for the Biharmonic Equation","authors":"D. Shodiev","doi":"10.17516/1997-1397-2022-15-2-199-213","DOIUrl":null,"url":null,"abstract":"The work is devoted to the study of continuation and stability estimation of the solution of the Cauchy problem for the biharmonic equation in the domain G from its known values on the smooth part of the boundary @G. The problem under consideration belongs to the problems of mathematical physics in which there is no continuous dependence of solutions on the initial data. In this work, using the Carleman function, not only the biharmonic function itself, but also its derivatives are restored from the Cauchy data on a part of the boundary of the region. The stability estimates for the solution of the Cauchy problem in the classical sense are obtained","PeriodicalId":438860,"journal":{"name":"Journal of Siberian Federal University. Mathematics & Physics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2022-15-2-199-213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work is devoted to the study of continuation and stability estimation of the solution of the Cauchy problem for the biharmonic equation in the domain G from its known values on the smooth part of the boundary @G. The problem under consideration belongs to the problems of mathematical physics in which there is no continuous dependence of solutions on the initial data. In this work, using the Carleman function, not only the biharmonic function itself, but also its derivatives are restored from the Cauchy data on a part of the boundary of the region. The stability estimates for the solution of the Cauchy problem in the classical sense are obtained
双调和方程的Cauchy问题
本文研究了双调和方程Cauchy问题在边界@G光滑部分上的解的延拓性和稳定性估计。所考虑的问题属于数学物理问题,其中解对初始数据没有连续依赖。在本工作中,利用Carleman函数,不仅恢复了双调和函数本身,而且从部分区域边界的Cauchy数据恢复了双调和函数的导数。给出了经典意义上柯西问题解的稳定性估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信