Optimality Analysis of Boundary-Uncertainty-Based Classifier Model Parameter Status Selection Method

David R Ha, Hideyuki Watanabe, Yuya Tomotoshi, Emilie Delattre, S. Katagiri
{"title":"Optimality Analysis of Boundary-Uncertainty-Based Classifier Model Parameter Status Selection Method","authors":"David R Ha, Hideyuki Watanabe, Yuya Tomotoshi, Emilie Delattre, S. Katagiri","doi":"10.1145/3297067.3297076","DOIUrl":null,"url":null,"abstract":"We proposed a novel method that selects an optimal classifier model's parameter status through the uncertainty measure evaluation of the estimated class boundaries instead of an estimation of the classification error probability. A key feature of our method is its potential to perform a classifier parameter status selection without a separate validation sample set that can be easily applied to any reasonable type of classifier model, unlike traditional approaches that often need a validation sample set or are sometimes less practical. In this paper, we first summarize our method and its experimental evaluation results and introduce the mathematical formalization for the posterior probability estimation procedure adopted in it. Then we show the convergence property of the estimation procedure and finally demonstrate our method's optimality in a practical situation where only a finite number of training samples are available.","PeriodicalId":340004,"journal":{"name":"International Conference on Signal Processing and Machine Learning","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3297067.3297076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We proposed a novel method that selects an optimal classifier model's parameter status through the uncertainty measure evaluation of the estimated class boundaries instead of an estimation of the classification error probability. A key feature of our method is its potential to perform a classifier parameter status selection without a separate validation sample set that can be easily applied to any reasonable type of classifier model, unlike traditional approaches that often need a validation sample set or are sometimes less practical. In this paper, we first summarize our method and its experimental evaluation results and introduce the mathematical formalization for the posterior probability estimation procedure adopted in it. Then we show the convergence property of the estimation procedure and finally demonstrate our method's optimality in a practical situation where only a finite number of training samples are available.
基于边界不确定性的分类器模型参数状态选择方法的最优性分析
本文提出了一种新的方法,通过对估计的类边界的不确定性度量评价来选择最优的分类器模型的参数状态,而不是估计分类错误概率。我们的方法的一个关键特征是它有可能在没有单独的验证样本集的情况下执行分类器参数状态选择,这可以很容易地应用于任何合理类型的分类器模型,而不像传统方法通常需要验证样本集或有时不太实用。本文首先总结了我们的方法及其实验评价结果,并介绍了该方法所采用的后验概率估计过程的数学形式化。然后我们证明了估计过程的收敛性,最后证明了我们的方法在训练样本数量有限的实际情况下的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信