Masoud Malekzadeh, P. Hajibabaee, Maryam Heidari, Samira Zad, Özlem Uzuner, James H. Jones
{"title":"Review of Graph Neural Network in Text Classification","authors":"Masoud Malekzadeh, P. Hajibabaee, Maryam Heidari, Samira Zad, Özlem Uzuner, James H. Jones","doi":"10.1109/uemcon53757.2021.9666633","DOIUrl":null,"url":null,"abstract":"Text classification is one of the fundamental problems in Natural Language Processing (NLP). Several research studies have used deep learning approaches such as Convolution Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification. Over the past decade, graph-based approaches have been used to solve various NLP tasks including text classification. This paper reviews the most recent state-of-the-art graph-based text classification, datasets, and performance evaluations versus baseline models.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Text classification is one of the fundamental problems in Natural Language Processing (NLP). Several research studies have used deep learning approaches such as Convolution Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification. Over the past decade, graph-based approaches have been used to solve various NLP tasks including text classification. This paper reviews the most recent state-of-the-art graph-based text classification, datasets, and performance evaluations versus baseline models.