Research on Quantification Method of Maize Leaf Phenotype Parameters Based on Machine Vision

W. Jinyong, Tan Wenrong, Hou Shuaimin, Wang Yang, Zhang Hongna
{"title":"Research on Quantification Method of Maize Leaf Phenotype Parameters Based on Machine Vision","authors":"W. Jinyong, Tan Wenrong, Hou Shuaimin, Wang Yang, Zhang Hongna","doi":"10.1109/ISCEIC51027.2020.00026","DOIUrl":null,"url":null,"abstract":"This paper aims to obtain a model (method) for monitering the growth of corn automatically and accurately. The latest computer vision technology is applied to calculate the method of extracting the surface characteristic parameters. Binocular vision technology is used to calculate the 3D point cloud of maize image. Meanwhile, the 3D point noise reduction established by bilateral filtering is adopted to establish the 3D reconstruction model of maize. In the 3D model, the height and width of maize are calculated proportionally. The error rate of the proposed method is 0.52%. This work provides a reference for the growth monitoring and virtual growth of corn.","PeriodicalId":249521,"journal":{"name":"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC51027.2020.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aims to obtain a model (method) for monitering the growth of corn automatically and accurately. The latest computer vision technology is applied to calculate the method of extracting the surface characteristic parameters. Binocular vision technology is used to calculate the 3D point cloud of maize image. Meanwhile, the 3D point noise reduction established by bilateral filtering is adopted to establish the 3D reconstruction model of maize. In the 3D model, the height and width of maize are calculated proportionally. The error rate of the proposed method is 0.52%. This work provides a reference for the growth monitoring and virtual growth of corn.
基于机器视觉的玉米叶片表型参数定量方法研究
本文旨在建立一种自动准确监测玉米生长的模型(方法)。应用最新的计算机视觉技术计算提取表面特征参数的方法。采用双目视觉技术对玉米图像进行三维点云计算。同时,利用双边滤波建立的三维点降噪,建立玉米三维重建模型。在三维模型中,玉米的高度和宽度按比例计算。该方法的误差率为0.52%。为玉米的生长监测和虚拟生长提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信