A clustering approach to wireless network intrusion detection

Shi Zhong, T. Khoshgoftaar, S. Nath
{"title":"A clustering approach to wireless network intrusion detection","authors":"Shi Zhong, T. Khoshgoftaar, S. Nath","doi":"10.1109/ICTAI.2005.5","DOIUrl":null,"url":null,"abstract":"Intrusion detection in wireless networks has become an indispensable component of any useful wireless network security systems, and has recently gained attention in both research and industry communities due to widespread use of wireless local area networks (WLANs). This paper focuses on detecting intrusions or anomalous behaviors in WLANs with data clustering techniques. We first explore the security vulnerabilities of 802.11 or Wi-Fi networks and summarize the network traffic metrics that are important to model the security of wireless networks. Based on the metrics studied we propose a clustering-based intrusion detection approach and evaluate it on a real-world large wireless network traffic dataset. The evaluation results demonstrate the effectiveness of our proposed intrusion detection approach for wireless networks","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Intrusion detection in wireless networks has become an indispensable component of any useful wireless network security systems, and has recently gained attention in both research and industry communities due to widespread use of wireless local area networks (WLANs). This paper focuses on detecting intrusions or anomalous behaviors in WLANs with data clustering techniques. We first explore the security vulnerabilities of 802.11 or Wi-Fi networks and summarize the network traffic metrics that are important to model the security of wireless networks. Based on the metrics studied we propose a clustering-based intrusion detection approach and evaluate it on a real-world large wireless network traffic dataset. The evaluation results demonstrate the effectiveness of our proposed intrusion detection approach for wireless networks
一种无线网络入侵检测的聚类方法
无线网络中的入侵检测已经成为任何有用的无线网络安全系统不可或缺的组成部分,近年来由于无线局域网(wlan)的广泛使用而引起了学术界和工业界的关注。本文主要研究利用数据聚类技术检测无线局域网中的入侵或异常行为。我们首先探讨了802.11或Wi-Fi网络的安全漏洞,并总结了对无线网络安全建模很重要的网络流量指标。在此基础上,提出了一种基于聚类的入侵检测方法,并在实际大型无线网络流量数据集上对其进行了评估。评估结果证明了我们提出的无线网络入侵检测方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信