{"title":"Consolidating High-Integrity, High-Performance, and Cyber-Security Functions on a Manycore Processor","authors":"B. D. de Dinechin","doi":"10.1145/3316781.3323473","DOIUrl":null,"url":null,"abstract":"The requirement of high performance computing at low power can be met by the parallel execution of an application on a possibly large number of programmable cores. However, the lack of accurate timing properties may prevent parallel execution from being applicable to time-critical applications. This problem has been addressed by suitably designing the architecture, implementation, and programming models, of the Kalray MPPA (Multi-Purpose Processor Array) family of single-chip many-core processors. We introduce the third-generation MPPA processor, whose key features are motivated by the high-performance and high-integrity functions of automated vehicles. High-performance computing functions, represented by deep learning inference and by computer vision, need to execute under soft real-time constraints. High-integrity functions are developed under model-based design, and must meet hard real-time constraints. Finally, the third-generation MPPA processor integrates a hardware root of trust, and its security architecture is able to support a security kernel for implementing the trusted execution environment functions required by applications.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3323473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The requirement of high performance computing at low power can be met by the parallel execution of an application on a possibly large number of programmable cores. However, the lack of accurate timing properties may prevent parallel execution from being applicable to time-critical applications. This problem has been addressed by suitably designing the architecture, implementation, and programming models, of the Kalray MPPA (Multi-Purpose Processor Array) family of single-chip many-core processors. We introduce the third-generation MPPA processor, whose key features are motivated by the high-performance and high-integrity functions of automated vehicles. High-performance computing functions, represented by deep learning inference and by computer vision, need to execute under soft real-time constraints. High-integrity functions are developed under model-based design, and must meet hard real-time constraints. Finally, the third-generation MPPA processor integrates a hardware root of trust, and its security architecture is able to support a security kernel for implementing the trusted execution environment functions required by applications.