Exploring Temporal Consistency in Image-Based Rendering for Immersive Video Transmission

Smitha Lingadahalli Ravi, F. Henry, L. Morin, Matthieu Gendrin
{"title":"Exploring Temporal Consistency in Image-Based Rendering for Immersive Video Transmission","authors":"Smitha Lingadahalli Ravi, F. Henry, L. Morin, Matthieu Gendrin","doi":"10.1109/EUVIP53989.2022.9922680","DOIUrl":null,"url":null,"abstract":"Image-based rendering methods synthesize novel views given input images captured from multiple viewpoints to display free viewpoint immersive video. Despite significant progress with the recent learning-based approaches, there are still some drawbacks. In particular, these approaches operate at the still image level and do not maintain consistency among consecutive time instants, leading to temporal noise. To address this, we propose an intra-only framework to identify regions of input images leading to temporally inconsistent synthesized views. Our method synthesizes better and more stable novel views, even in the most general use case of immersive video transmission. We conclude that the network seems to identify and correct spatial features at the still image level that produce artifacts in the temporal dimension.","PeriodicalId":120249,"journal":{"name":"2022 10th European Workshop on Visual Information Processing (EUVIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP53989.2022.9922680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image-based rendering methods synthesize novel views given input images captured from multiple viewpoints to display free viewpoint immersive video. Despite significant progress with the recent learning-based approaches, there are still some drawbacks. In particular, these approaches operate at the still image level and do not maintain consistency among consecutive time instants, leading to temporal noise. To address this, we propose an intra-only framework to identify regions of input images leading to temporally inconsistent synthesized views. Our method synthesizes better and more stable novel views, even in the most general use case of immersive video transmission. We conclude that the network seems to identify and correct spatial features at the still image level that produce artifacts in the temporal dimension.
沉浸式视频传输中基于图像渲染的时间一致性研究
基于图像的渲染方法合成从多个视点捕获的输入图像的新视图,以显示自由视点沉浸式视频。尽管最近基于学习的方法取得了重大进展,但仍然存在一些缺点。特别是,这些方法在静止图像水平上运行,并且不能保持连续时间瞬间之间的一致性,从而导致时间噪声。为了解决这个问题,我们提出了一个内部框架来识别导致合成视图暂时不一致的输入图像区域。即使在沉浸式视频传输的最一般用例中,我们的方法也能合成更好、更稳定的新视图。我们得出的结论是,该网络似乎在静止图像级别上识别并纠正了在时间维度上产生伪影的空间特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信